Parallel Experiments
1.74K subscribers
64 photos
1 video
3 files
823 links
Stay informed. Stay authentic.

Welcome to the public part of my brain. Here I share curations and thoughts.

Created with ❤️ by @linghao.
Download Telegram
https://www.imdb.com/title/tt32376165/

第一时间看了拆弹部队导演 Kathryn Bigelow 的新片 A House of Dynamite。不打算剧透所以在这里不说太多,但可以简单评价一下:

这可能是迄今对于美国现代核威慑和核反击预案最充满戏剧冲突、用了最多篇幅去描绘的荧幕呈现。在这之前可能是 Madam Secretary S04E22 Night Watch 那一集。

这个片子更像是一种陈列和观点表达,所以故事性上可能不如像是我个人心目中核战片 Top 1 的 The Sum of All Fears,但那毕竟已经是 20 多年前的片子了,视觉上有些脱节了。

总的来说非常值得一看,个人觉得片子最大的几个亮点我这里都刻意没有提到。
3
最近放了个长假,积压了很多东西没看,有些 fomo,尤其是 AI 领域这一天一个新进展…… 不过换个角度看,这样的好处在于时间能够帮你筛掉一些过了当下并不太值得看的东西 😄

之前我就称赞过 HuggingFace 团队发布的小模型训练分享既接轨最新进展又提供足够多细节,没想到这次他们更是直接发布了一篇预计阅读时间 2-4 天的模型训练全攻略。
虽说从开源模型百花齐放的结果来看我们已经知道模型训练没有太多 rocket science,但是这么完整和细节的分享还是令人惊叹👍
https://huggingface.co/spaces/HuggingFaceTB/smol-training-playbook
🔥81🐳1🗿1
https://dosaygo-studio.github.io/hn-front-page-2035/news
最近看到最搞笑的 AI 笑话:让 Gemini 幻想 10 年以后的 HackerNews 首页长啥样

太典了,尤其是 Google kills Gemini 那一条 😆
Please open Telegram to view this post
VIEW IN TELEGRAM
🤣81🥰1🤩1🗿1
🔥1
https://laike9m.com/blog/avoid-mini-frameworks,171/

laike9m 这篇文章特别准确地指出了大公司 promo driven 的工程文化经常导致的一种病态。我深有共鸣,而且想补充一点:很多工程师在造这些 mini framework 轮子的时候同时也违反了不要 premature optimization 的准则。我在 Google 7 年,好几次看到有人试图做一个非常 generic 的系统,但他们最初却只能 onboard 个位数的用户。这种常识基本上每次都以失败告终,因为你很难在没有太多有代表性的用户的参与的前提下设计和搭建有着足够好抽象的系统。而那些过早的抽象和优化只会妨碍最初那批用户的 onboarding。
👍6🥰1
新年快乐!感谢关注🙏
👏11
A few days late but I'm so proud to share what I've been working on for the past 3 months with an amazing team: Gemini Personal Intelligence 🚀
https://blog.google/innovation-and-ai/products/gemini-app/personal-intelligence/

You can now connect Gemini with other beloved Google products (starting with Search, YouTube, Photos, Gmail and other Workspace tools) in one click. Combined with retrieval of past conversations, Gemini is able to intelligently fetch relevant context and provide deeply personalized responses. And all of this is built with privacy and user control in mind.

This is one of the first steps toward a universal assistant that is personal, proactive and powerful. No doubt there will be some issues, but even in the early days of developing the MVP we've had so many users experience a wow moment when Gemini really "gets" them with a great personalized response.

Personal context is messy and mistakes are unavoidable. My focus has been about memory and correctability -- making sure that users can course correct when that happens. It's been a very challenging but interesting problem space with many open questions. I feel very lucky to have the opportunity to work on frontier applications at a company that is truly battle ready at the every layer of the AI stack.

Any feedback is highly appreciated as we continue to perfect the feature and envision the future!
🔥17👍1