Parallel Experiments
1.71K subscribers
62 photos
1 video
3 files
811 links
Stay informed. Stay authentic.

Welcome to the public part of my brain. Here I share curations and thoughts.

Created with ❤️ by @linghao.
Download Telegram
Forwarded from C’s Random Collection
https://ai-2027.com “We predict that the impact of superhuman AI over the next decade will be enormous, exceeding that of the Industrial Revolution.” 不管怎样,这个页面的 interaction 很棒 #ai
🤩1
Truly a thought-provoking piece, from the author of τ-bench.
https://ysymyth.github.io/The-Second-Half/ #ai

So what’s suddenly different now?

In three words: RL finally works. More precisely: RL finally generalizes. After several major detours and a culmination of milestones, we’ve landed on a working recipe to solve a wide range of RL tasks using language and reasoning.

The second half of AI — starting now — will shift focus from solving problems to defining problems. In this new era, evaluation becomes more important than training. Instead of just asking, “Can we train a model to solve X?”, we’re asking, “What should we be training AI to do, and how do we measure real progress?” To thrive in this second half, we’ll need a timely shift in mindset and skill set, ones perhaps closer to a product manager.

It turned out the most important part of RL might not even be the RL algorithm or environment, but the priors, which can be obtained in a way totally unrelated from RL (LLMs).
🔥2
https://arxiv.org/abs/2305.18290 #llm #ai

今天深入学习了 DPO,再次感叹扎实的数学功底对 AI/ML Research 的重要性……

原始的 RLHF 是用 pairwise human preference data(A 和 B 哪个更好)去训练一个 reward model,然后用 RL 来训练主 policy model,objective 是 minimize negative log likelihood + regularization(比如 PPO 就是通过新旧 policy 之间的 KL Divergence 来做 regularization)。这样的缺点在于 RL 是出了名的难搞,而且还需要一个 critic model 来预测 reward,使得整个系统的复杂性很高。

DPO 的思路是,观察到 RLHF 的 objective 本质上是 minimize loss over (latent) reward function,通过一番 reparameterization 等数学推导,重新设计了一个 minimize loss over policy 的 objective,绕过了中间这个 reward model,让 gradient update 直接增加 policy model 生成 winner response 的概率并降低 loser response 的概率,大幅简化了流程。

拓展阅读:
- KTO: 更进一步,不需要 pairwise comparison,只用对 individual example 的 upvote/downvote 也可以学习到 preference。
- IPO: 解决 DPO 容易 overfit 的问题。
👍3