Forwarded from Dateno
🚀 Major Update of the Dateno Data Catalog Registry
The Dateno Registry — an open-source & open-data catalog of (almost) *all* data portals worldwide — just got a huge upgrade.
It powers the Dateno search engine, which now indexes 22M+ datasets.
🔍 Key Additions
• 1,993 new data catalog records
• 1,515 ArcGIS Server instances — massive geoportal expansion
• 293 global-level catalogs
• 97 French data catalogs
🌍 Geospatial Infrastructure
• 83 GeoServer
• 37 GeoNode
• 33 GeoNetwork
• 8 Lizmap
• 3 MapProxy
• 2 MapBender
📊 Open Data Platforms
• 47 OpenDataSoft
• 42 CKAN
• 5 DKAN
🔬 Scientific Repositories
• 38 Figshare
• 6 DSpace
• 6 NADA
• 9 THREDDS
🛠 Improvements
• 363 records with improved metadata
• Updated API endpoints for IPT catalogs
• Better metadata completeness
• Improved geographic & administrative coverage
🔗 More Info
🌐 Dateno Registry: https://dateno.io/registry
💾 Open-source data: https://github.com/commondataio/dataportals-registry
📦 Full dataset (parquet): https://github.com/commondataio/dataportals-registry/blob/main/data/datasets/full.parquet
#dateno #opendata #datacatalogs #opensource
The Dateno Registry — an open-source & open-data catalog of (almost) *all* data portals worldwide — just got a huge upgrade.
It powers the Dateno search engine, which now indexes 22M+ datasets.
🔍 Key Additions
• 1,993 new data catalog records
• 1,515 ArcGIS Server instances — massive geoportal expansion
• 293 global-level catalogs
• 97 French data catalogs
🌍 Geospatial Infrastructure
• 83 GeoServer
• 37 GeoNode
• 33 GeoNetwork
• 8 Lizmap
• 3 MapProxy
• 2 MapBender
📊 Open Data Platforms
• 47 OpenDataSoft
• 42 CKAN
• 5 DKAN
🔬 Scientific Repositories
• 38 Figshare
• 6 DSpace
• 6 NADA
• 9 THREDDS
🛠 Improvements
• 363 records with improved metadata
• Updated API endpoints for IPT catalogs
• Better metadata completeness
• Improved geographic & administrative coverage
🔗 More Info
🌐 Dateno Registry: https://dateno.io/registry
💾 Open-source data: https://github.com/commondataio/dataportals-registry
📦 Full dataset (parquet): https://github.com/commondataio/dataportals-registry/blob/main/data/datasets/full.parquet
#dateno #opendata #datacatalogs #opensource
Dateno
Dateno Registry and Dataset Search Engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.
👍5❤1
Давно планировал написать про цену открытости, того занимаясь открытым кодом, открытыми данными или другой деятельностью связанной с благом обществу и технологиям кроме плюсов есть и издержки, некоторые из которых бывают очень неочевидными ну или, как минимум, не на поверхности.
Вот несколько примеров:
- Роботизированные спамеры и скамеры. Одна из бед открытых каталогов данных со свободной регистрацией пользователей и публикацией данных в какой-то момент стало бесконечное количество спама. Например, на порталах на базе CKAN открытая регистрация была прописана по умолчанию, в какой-то момент спамеры и скамеры понаписали скриптов которые регистрировали сотни тысяч аккаунтов и от них постили все что только разрешалось: создавали группы, профили организаций и карточки датасетов. Все фэйковые конечно, но в результате многие открытые порталы оказались забиты низкокачественным SEO мусором или, хуже того, откровенным скамом. Живой пример у меня перед глазами портал открытых данных метеослужбы Туниса. Там зарегистрировано более 1.3миллиона аккаунтов пруф потому что они не стали ограничивать регистрацию и поэтому у них у них более 45 тысяч спам текстов в одном из разделов. Из-за этого открытость порталов посвященных открытости приходится ограничивать, мы позакрывали регистрацию во всех своих основанных на CKAN порталах открытых данных именно по этой причине.
- Специализированный спам. Если ты активно публикуешь открытый код, ведешь активность на Github то рано или поздно, но скорее очень рано на тебя посыпется специализированный спам который можно разделить условно на 2 типа:
1-й - "Мы тут увидели что Вы добавили в избранное такой то open source проект, а у нас очень похожий, обязательно зайдите и посмотрите на нас и может быть используйте и добавьте в избранное"
2-й - "Чувак(-иха) у тебя столько активности в твоем аккаунте, зарегистрируйся в нашем сервисе где мы сводим больших работодателей из США и крутых программистов"
- Публичный технический долг. Технический долг штука неприятная для всех кто когда-либо занимался программированием, для дела ли или для души, но когда ты публикуешь открытый код ты, де-факто, принимаешь для себя что твой технический долг будет общедоступен. Да-да, не только код, но и технический долг по нему.
- Похвала редка, критика неизбежна. Это касается не только открытых данных и открытого кода, но здесь важно понимание что за очень редкими случаями решения действительно массовых и болезненных проблем, пользователи будут редко хвалить и нередко критиковать. Это нормально, особенно в коммуникации в некоторых культурах.
—
Конечно, все это не отменяет плюсов, общедоступное портфолио, способ коммуникации с теми кто разделяет твои интересы и многое другое.
#thoughts #opendata #opensource
Вот несколько примеров:
- Роботизированные спамеры и скамеры. Одна из бед открытых каталогов данных со свободной регистрацией пользователей и публикацией данных в какой-то момент стало бесконечное количество спама. Например, на порталах на базе CKAN открытая регистрация была прописана по умолчанию, в какой-то момент спамеры и скамеры понаписали скриптов которые регистрировали сотни тысяч аккаунтов и от них постили все что только разрешалось: создавали группы, профили организаций и карточки датасетов. Все фэйковые конечно, но в результате многие открытые порталы оказались забиты низкокачественным SEO мусором или, хуже того, откровенным скамом. Живой пример у меня перед глазами портал открытых данных метеослужбы Туниса. Там зарегистрировано более 1.3миллиона аккаунтов пруф потому что они не стали ограничивать регистрацию и поэтому у них у них более 45 тысяч спам текстов в одном из разделов. Из-за этого открытость порталов посвященных открытости приходится ограничивать, мы позакрывали регистрацию во всех своих основанных на CKAN порталах открытых данных именно по этой причине.
- Специализированный спам. Если ты активно публикуешь открытый код, ведешь активность на Github то рано или поздно, но скорее очень рано на тебя посыпется специализированный спам который можно разделить условно на 2 типа:
1-й - "Мы тут увидели что Вы добавили в избранное такой то open source проект, а у нас очень похожий, обязательно зайдите и посмотрите на нас и может быть используйте и добавьте в избранное"
2-й - "Чувак(-иха) у тебя столько активности в твоем аккаунте, зарегистрируйся в нашем сервисе где мы сводим больших работодателей из США и крутых программистов"
- Публичный технический долг. Технический долг штука неприятная для всех кто когда-либо занимался программированием, для дела ли или для души, но когда ты публикуешь открытый код ты, де-факто, принимаешь для себя что твой технический долг будет общедоступен. Да-да, не только код, но и технический долг по нему.
- Похвала редка, критика неизбежна. Это касается не только открытых данных и открытого кода, но здесь важно понимание что за очень редкими случаями решения действительно массовых и болезненных проблем, пользователи будут редко хвалить и нередко критиковать. Это нормально, особенно в коммуникации в некоторых культурах.
—
Конечно, все это не отменяет плюсов, общедоступное портфолио, способ коммуникации с теми кто разделяет твои интересы и многое другое.
#thoughts #opendata #opensource
👍16❤3
Для всех ИИ агентов для кодинга у меня есть довольно простой тест который большая часть из них ещё полгода назад пройти не могли. В Армении есть портал статистики statbank.armstat.am который много лет назад создавался за счет помощи ЕС и с той поры не обновлялся. Он построен на базе движка с открытым кодом PxWeb шведско-норвежской разработки который прошел большую эволюцию за эти годы, но в Армстате используется очень старая его версия с интерфейсом созданным на ASP.NET с большим числом postback запросов что не критично, но неприятно усложняет сбор из него данных. Я такую задачу отношу к скорее утомительным чем сложным, потому что отладка на них может быть долгой и замороченной.
У меня с этой задачей всегда была развилка из 3-х вариантов:
1. Создать и оплатить задачу для фрилансера (в пределах от $50 до $250 за всю работу)
2. Поручить одному из разработчиков/инженеров в команде (по уровню это задача скорее для аккуратного джуна)
3. С помощью ИИ агента сделать такой парсер
Поскольку задача не приоритетная (в Dateno данные собираются с более современных инсталляций PxWeb и через API), то для таких проверок ИИ агентов она прекрасно подходила. И я её пробовал решать и через ChatGPT, и Copilot, и Manus и Claude Code и первую версию Cursor'а, в общем много вариантов.
Они либо утыкались в то что определяли что это PxWeb и делали код для API который не работал, или проверяли что код для API не работает и писали что ничего дальше сделать не могут, или писали плохой код для скрейпинга веб страниц который не работал.
В итоге могу сказать что окончательно рабочее решение сумел сделать Antifravity от Google. Но каким образом, через запуск Chrome локально и автоматизированно пройдясь по сайту определив его структуру и создав код на Python который с некоторыми ошибками, но в итоге извлекал списки показателей и умел выгружать данные. Неидеальные, потому что так и не научился выгружать данные в форматах отличных от CSV, несмотря на несколько попыток и при том что через веб интерфейс это все работает, значит ошибка не в оригинальной системе.
Тем не менее, это уже результат примерно 2-х часов работы, что соответствовало бы времени в течение которого пришлось бы потратить на проверку работы фрилансера или разработчика в команде.
Что в итоге:
1. Количеств задач отдаваемых фрилансерам стремительно падает кроме малого числа где фрилансер большой профессионал в своей специализированной области.
2. Зачем нанимать джунов? Этот вопрос все острее с развитием ИИ агентов
3. ИИ агенты все успешнее решают "замороченные" и "утомительные" задачи с которыми ранее не справлялись
Все выводы звучали и раньше.
- ИИ агенты позволяют сильно повышать продуктивность команд
- проблема подготовки зрелых специалистов из джунов только нарастает
Меня приятно удивило качество работы Antigravity, но я его рассматриваю скорее как пример прогресса ИИ агентов в целом, подозреваю что другие ИИ агенты если ещё не могут этого (нужно браузером исследовать сайт), то смогут в скором будущем.
#opendata #opensource #ai #coding
У меня с этой задачей всегда была развилка из 3-х вариантов:
1. Создать и оплатить задачу для фрилансера (в пределах от $50 до $250 за всю работу)
2. Поручить одному из разработчиков/инженеров в команде (по уровню это задача скорее для аккуратного джуна)
3. С помощью ИИ агента сделать такой парсер
Поскольку задача не приоритетная (в Dateno данные собираются с более современных инсталляций PxWeb и через API), то для таких проверок ИИ агентов она прекрасно подходила. И я её пробовал решать и через ChatGPT, и Copilot, и Manus и Claude Code и первую версию Cursor'а, в общем много вариантов.
Они либо утыкались в то что определяли что это PxWeb и делали код для API который не работал, или проверяли что код для API не работает и писали что ничего дальше сделать не могут, или писали плохой код для скрейпинга веб страниц который не работал.
В итоге могу сказать что окончательно рабочее решение сумел сделать Antifravity от Google. Но каким образом, через запуск Chrome локально и автоматизированно пройдясь по сайту определив его структуру и создав код на Python который с некоторыми ошибками, но в итоге извлекал списки показателей и умел выгружать данные. Неидеальные, потому что так и не научился выгружать данные в форматах отличных от CSV, несмотря на несколько попыток и при том что через веб интерфейс это все работает, значит ошибка не в оригинальной системе.
Тем не менее, это уже результат примерно 2-х часов работы, что соответствовало бы времени в течение которого пришлось бы потратить на проверку работы фрилансера или разработчика в команде.
Что в итоге:
1. Количеств задач отдаваемых фрилансерам стремительно падает кроме малого числа где фрилансер большой профессионал в своей специализированной области.
2. Зачем нанимать джунов? Этот вопрос все острее с развитием ИИ агентов
3. ИИ агенты все успешнее решают "замороченные" и "утомительные" задачи с которыми ранее не справлялись
Все выводы звучали и раньше.
- ИИ агенты позволяют сильно повышать продуктивность команд
- проблема подготовки зрелых специалистов из джунов только нарастает
Меня приятно удивило качество работы Antigravity, но я его рассматриваю скорее как пример прогресса ИИ агентов в целом, подозреваю что другие ИИ агенты если ещё не могут этого (нужно браузером исследовать сайт), то смогут в скором будущем.
#opendata #opensource #ai #coding
Statistikmyndigheten SCB
PxWeb
Statistics Sweden (SCB) and Statistics Norway (SSB) has developed a new interface for PxWeb 2.0. The first version was released in October 2025 and is available on Github.
👍9❤4
Да, кстати, началась подготовка ко Дню открытых данных в мире и в РФ в марте 2026 г. Глобальная тема дней открытых данных будет "Trainathons" - подготовка данных для работы Public AI (открытых ИИ моделей) в первую очередь на базе Википедии и других открытых проектов со свободными лицензиями.Мы в Инфокультуре уже много лет проводим ОДД в формате онлайн конфы, но если есть другие предложения, пишите в чате @begtinchat или мне в личку.
#opendata #events
#opendata #events
❤6👍3🔥1
В рубрике интересных открытых наборов данных переписка Джеффри Эпштейна выложенная на сайте комитета по надзору Конгресса США. Что характерно, выложена она в Google Drive (прямая ссылка) и с копией в Dropbox (прямая ссылка). Всего это более 20 тысяч страниц документов которые так и ждут наглядной визуализации, анализа, подключения ИИ ботов для изучения и всего такого.
#opendata #datasets #usa #epstein
#opendata #datasets #usa #epstein
United States House Committee on Oversight and Government Reform
Oversight Committee Releases Additional Epstein Estate Documents - United States House Committee on Oversight and Government Reform
👍5🔥4😁2🌚1🌭1
К вопросу о применении ИИ агентов для разработки в задачах ведения баз данных я вдруг понял какому количеству унаследованного кода и данных можно придать новую жизнь.
У меня есть как минимум две таких базы данных которые можно перевести в режим декларативной сборки набора данных и обогащение с помощью ИИ, это:
1. Реестр всех госдоменов в РФ используемый для цифровой архивации
2. Большой каталог всех межгосударственных структур (ОЭСР, ООН и тд.) с привязкой к странам и тд.
Первое вообще не вариант вести открыто уже давно, можно получить обвинение в помощи хакерам, улучшать его сейчас публично совсем сложно, даже при всех благих целях применения - архивации госсайтов.
А вот второе я веду уже лет 10, но года 4 уже не обновлял. Это штука регулярно необходимая для мэппинга разного рода объектов - данных, текстовых материалов и не только.
Одно из применений в визуализациях и аналитике когда надо сравнить какие-то абсолютные или средние значения показателей демографии, ВВП, размеров рынка и тд. по страновым блокам. Сравнить ЕС и БРИКС или рейтинги внутри странового блока.
В общем это большая база эффективно поддающаяся автоматическому обогащению данных и дополняемая метаданными по странам, в принципе, расширяемая от макрорегионов до субрегионов и тогда применяемая для задач обогащения данных и мэппинга много где.
К примеру, реестров стран в мире не меньше нескольких десятков. Когда надо мэппить разные объекты на страны чаще всего используют реестр стран ООН, ISO 3166, справочник Всемирного банка, справочник геослужбы США и несколько частных проектов с открытым кодом. Внутри Dateno активно используется python библиотека pycountry, но это не единственный и не идеальный способ.
Впрочем задачи Dateno с помощью pycountry и разметки через LLM решаются достаточно эффективно, поэтому я на вот этот дата продукт в виде межгосударственных организаций и всего остального рассматриваю скорее как хобби чем как рабочую задачу.
Важно то что трудоёмкость резко падает с применением ИИ агентов потому что теперь они умеют читать данные из Википедии, Wikidata и десятков других справочников с высоким уровнем качества обогащения данных. То на что могли бы уйти месяцы ручной работы можно сделать за несколько дней.
#opendata #opensource #thoughts
У меня есть как минимум две таких базы данных которые можно перевести в режим декларативной сборки набора данных и обогащение с помощью ИИ, это:
1. Реестр всех госдоменов в РФ используемый для цифровой архивации
2. Большой каталог всех межгосударственных структур (ОЭСР, ООН и тд.) с привязкой к странам и тд.
Первое вообще не вариант вести открыто уже давно, можно получить обвинение в помощи хакерам, улучшать его сейчас публично совсем сложно, даже при всех благих целях применения - архивации госсайтов.
А вот второе я веду уже лет 10, но года 4 уже не обновлял. Это штука регулярно необходимая для мэппинга разного рода объектов - данных, текстовых материалов и не только.
Одно из применений в визуализациях и аналитике когда надо сравнить какие-то абсолютные или средние значения показателей демографии, ВВП, размеров рынка и тд. по страновым блокам. Сравнить ЕС и БРИКС или рейтинги внутри странового блока.
В общем это большая база эффективно поддающаяся автоматическому обогащению данных и дополняемая метаданными по странам, в принципе, расширяемая от макрорегионов до субрегионов и тогда применяемая для задач обогащения данных и мэппинга много где.
К примеру, реестров стран в мире не меньше нескольких десятков. Когда надо мэппить разные объекты на страны чаще всего используют реестр стран ООН, ISO 3166, справочник Всемирного банка, справочник геослужбы США и несколько частных проектов с открытым кодом. Внутри Dateno активно используется python библиотека pycountry, но это не единственный и не идеальный способ.
Впрочем задачи Dateno с помощью pycountry и разметки через LLM решаются достаточно эффективно, поэтому я на вот этот дата продукт в виде межгосударственных организаций и всего остального рассматриваю скорее как хобби чем как рабочую задачу.
Важно то что трудоёмкость резко падает с применением ИИ агентов потому что теперь они умеют читать данные из Википедии, Wikidata и десятков других справочников с высоким уровнем качества обогащения данных. То на что могли бы уйти месяцы ручной работы можно сделать за несколько дней.
#opendata #opensource #thoughts
👍9✍2🤔2❤1🌚1
В рубрике плохих примеров открытых данных открытые данные на портале data.gov.ru (ничего удивительного, да?)
набор данных от РКН Реестр граждан и организаций, привлекаемых Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций в качестве экспертов к проведению мероприятий по контролю в сфере связи
Дата последних изменений 1 декабря 2025 г., актуальность на 30 августа 2014 г.
То есть это буквально набор данных устаревший более чем 11 лет назад. Не просто неактуальный, а давно бесполезный. Но зачем-то "меняющийся". На сайте самого РКН эти же данные, но уже актуальные.
Повторю свой тезис про бесполезность портала data.gov.ru для чего бы то ни было.
#opendata #russia #datasets
набор данных от РКН Реестр граждан и организаций, привлекаемых Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций в качестве экспертов к проведению мероприятий по контролю в сфере связи
Дата последних изменений 1 декабря 2025 г., актуальность на 30 августа 2014 г.
То есть это буквально набор данных устаревший более чем 11 лет назад. Не просто неактуальный, а давно бесполезный. Но зачем-то "меняющийся". На сайте самого РКН эти же данные, но уже актуальные.
Повторю свой тезис про бесполезность портала data.gov.ru для чего бы то ни было.
#opendata #russia #datasets
🤔6👍3😁2💯1
В качестве примера данных создаваемых и улучшаемых с помощью ИИ, публикую открытым кодом и открытыми данными Internacia Datasets (Internacia - это международный на эсператно).
В репозитории находятся наборы данных в форматах JSONl, YAML, Parquet и база DuckDB в которых содержатся данные о 252 странах и 727 группах стран и межгосударственных организациях. Там же подробности про содержание и структуру базы, примеры доступа и другие подробности.
Эти наборы данных собираются из большого числа YAML файлов из папок data/countries и data/intblocks. В свою очередь эти YAML файлы вручную или автоматизированно обновляются. В частности чтобы собрать эту базу я взял свою базу межгосударственных организаций 5-летней давности, поправил вручную самое критичное и привел в порядок с помощью ИИ агентов Antigravity и Cursor, после чего снова поправил и в итоге собрал имеющиеся записи в наборы данных.
В Dateno сейчас частично используются часть этой логики используется для мэппинга датасетов на страны, но после завершения SDK для Python'а оно заменит применяемую сейчас библиотеку pycountry на использование этого справочника. а заодно даст возможность, при желании, обогащать датасеты дополнительными фильтрами и метаданными по привязкам к геоблокам, например, отфильтровывая датасеты только из стран Евросоюза или стран БРИКС или стран Лиги арабских государств.
Сейчас идет активный рефакторинг части кода Dateno, так что этот компонент будет там использоваться.
А, в целом, у него много применений. Самое очевидное про которое я все время говорю - это региональные блоковые рейтинги. Хочется сделать рейтинг стран по открытости внутри политических блоков? Без проблем. Хочется отрейтинговать страны ОЭСР по ВВП? Тоже несложно. И многое и многое другое, это справочник, упакованный в современные форматы.
Источники датасета: собственная база, Wikipedia, Wikidata, сайты межгосударственных организаций, реестры стран ООН и Всемирного банка.
Важная особенность в том что в перечне стран есть не только те что являются членами ООН, но и суверенные территории и непризнанные государства. Поэтому их 252, в основе был справочник Всемирного Банка, а он включает многие суверенные территории не являющиеся членами ООН.
Дальнейшее развитие:
1. SDK для Python
2. REST API возможно вместе с другими похожими справочными данными
3. Расширение на субрегиональный уровень по кодам ISO3166-2 (точно не первый приоритет)
4. Исправление ошибок и дополнения метаданных
#opendata #opensource #dateno #datasets
В репозитории находятся наборы данных в форматах JSONl, YAML, Parquet и база DuckDB в которых содержатся данные о 252 странах и 727 группах стран и межгосударственных организациях. Там же подробности про содержание и структуру базы, примеры доступа и другие подробности.
Эти наборы данных собираются из большого числа YAML файлов из папок data/countries и data/intblocks. В свою очередь эти YAML файлы вручную или автоматизированно обновляются. В частности чтобы собрать эту базу я взял свою базу межгосударственных организаций 5-летней давности, поправил вручную самое критичное и привел в порядок с помощью ИИ агентов Antigravity и Cursor, после чего снова поправил и в итоге собрал имеющиеся записи в наборы данных.
В Dateno сейчас частично используются часть этой логики используется для мэппинга датасетов на страны, но после завершения SDK для Python'а оно заменит применяемую сейчас библиотеку pycountry на использование этого справочника. а заодно даст возможность, при желании, обогащать датасеты дополнительными фильтрами и метаданными по привязкам к геоблокам, например, отфильтровывая датасеты только из стран Евросоюза или стран БРИКС или стран Лиги арабских государств.
Сейчас идет активный рефакторинг части кода Dateno, так что этот компонент будет там использоваться.
А, в целом, у него много применений. Самое очевидное про которое я все время говорю - это региональные блоковые рейтинги. Хочется сделать рейтинг стран по открытости внутри политических блоков? Без проблем. Хочется отрейтинговать страны ОЭСР по ВВП? Тоже несложно. И многое и многое другое, это справочник, упакованный в современные форматы.
Источники датасета: собственная база, Wikipedia, Wikidata, сайты межгосударственных организаций, реестры стран ООН и Всемирного банка.
Важная особенность в том что в перечне стран есть не только те что являются членами ООН, но и суверенные территории и непризнанные государства. Поэтому их 252, в основе был справочник Всемирного Банка, а он включает многие суверенные территории не являющиеся членами ООН.
Дальнейшее развитие:
1. SDK для Python
2. REST API возможно вместе с другими похожими справочными данными
3. Расширение на субрегиональный уровень по кодам ISO3166-2 (точно не первый приоритет)
4. Исправление ошибок и дополнения метаданных
#opendata #opensource #dateno #datasets
👍7✍2❤1🔥1
В рубрике полезных инструментов для сбора данных tdl (Telegram Downloader) инструмент командной строки,написан на Go, под лицензией AGPL-3.0, позволяет выгружать списки сообщений, сами сообщения и файлы и проводить другие манипуляции по выгрузке списков чатов, их участников и другой информации.
Выглядит как полезный инструмент для разных задач: мониторинга телеграм каналов, OSINT, создания наборов данных по тематикам и, конечно, цифровой архивации. Для последней задачи инструмент хорошо бы доработать и добавить команду "archive" для создания или обновления полного слепка данных, но можно и сделать надстройку над этой утилитой.
Что важно - это живая разработка, с 18 контрибьюторами, основной разработчик и часть контрибьютров китайскоязычные, видимо я пропустил когда в Китае Телеграм начал набирать популярность.
Мне лично нравится как сделан этот инструмент по архитектуре, логике команд, набору опций (выкачивать только сообщения, скачивать медиа) и так далее. Хотелось бы такой же, но универсальный для разных платформ и соцсетей или даже отдельные для других платформ сделанные по схожей логике. Для РФ скоро будет актуален инструмент для выгрузки чатов и каналов в MAX потому что у MAX'а нет открытой веб версии без авторизации как это есть у телеграм'а (пример - https://t.me/s/begtin) и все что создается внутри платформы не архивируется. Но это уже отдельная тема.
Пока же tdl полезный инструмент для телеграма и хорошая референсная реализация подобных инструментов для других задач.
#opendata #opensource #digitalpreservation #data #tools
Выглядит как полезный инструмент для разных задач: мониторинга телеграм каналов, OSINT, создания наборов данных по тематикам и, конечно, цифровой архивации. Для последней задачи инструмент хорошо бы доработать и добавить команду "archive" для создания или обновления полного слепка данных, но можно и сделать надстройку над этой утилитой.
Что важно - это живая разработка, с 18 контрибьюторами, основной разработчик и часть контрибьютров китайскоязычные, видимо я пропустил когда в Китае Телеграм начал набирать популярность.
Мне лично нравится как сделан этот инструмент по архитектуре, логике команд, набору опций (выкачивать только сообщения, скачивать медиа) и так далее. Хотелось бы такой же, но универсальный для разных платформ и соцсетей или даже отдельные для других платформ сделанные по схожей логике. Для РФ скоро будет актуален инструмент для выгрузки чатов и каналов в MAX потому что у MAX'а нет открытой веб версии без авторизации как это есть у телеграм'а (пример - https://t.me/s/begtin) и все что создается внутри платформы не архивируется. Но это уже отдельная тема.
Пока же tdl полезный инструмент для телеграма и хорошая референсная реализация подобных инструментов для других задач.
#opendata #opensource #digitalpreservation #data #tools
GitHub
GitHub - iyear/tdl: 📥 A Telegram toolkit written in Golang
📥 A Telegram toolkit written in Golang. Contribute to iyear/tdl development by creating an account on GitHub.
👍12✍6⚡2❤1
Полезные ссылки про данные, технологии и не только:
- Yaak - GUI клиент для REST API, как альтернатива Postman, Insomnia, Apidog и другим. Из плюсов - открытый код под лицензией MIT и сравнительно небольшой размер всего 60МБ (удивительно мало для настольного приложения по нынешним временам). Автор явно нацелен на коммерциализацию, но пока берет плату только за коммерческое использование. По бизнес модели больше похоже на классическое приобретение лицензии на ПО, а не на подписочный облачный сервис
- Will there ever be a worse time to start a startup? - очередной отличный текст от Бена Стенсила о том что сейчас стоимость разработки падает на 10% ежемесячно и что для стартапов это реальный вызов и он задается вопросом: Не худшее ли сейчас время для запуска стартапа? Хороший вопрос, весьма точный. ИИ реально поглощает все что только можно
- Commission and European Investment Bank Group team up to support AI Gigafactories Евросоюз запланировал 20 миллиардов евро на ближайшие годы чтобы сравняться в ИИ гонке с США и Китаем. Как я понимаю из текста инвестиции планируются через Европейский инвестиционный банк (EIB) и расходы будут проводится открытыми тендерами.
- Wikipedia urges AI companies to use its paid API, and stop scraping команда Википедии продолжает призывать ИИ компании использовать их платное API, вместо скрейпинга. По мне так это глас вопиющего в пустыне потому
почти все ИИ агенты по умолчанию точно используют открытые дампы и контент с веб-страниц и чтобы они перестали это делать Википедии придется перестать быть собой и начать закрываться гораздо более агрессивно что не остановит ИИ боты, но приведет к ещё большей потере трафика. Не могу пока разглядеть в происходящем стратегии с потенциально позитивным исходом.
- AI in State Government доклад о применении ИИ в госуправлении в правительствах штатов США. Полезно большим числом примеров того как ИИ агенты и ИИ в принципе применяют. С оговоркой что доклад от аналитиков из подразделения IBM работающего с госухой в США, так что кейсы интересные, но как научную работу рассматривать не стоит. Скорее как анализ рынка консультантами.
#opendata #ai #wikipedia #government
- Yaak - GUI клиент для REST API, как альтернатива Postman, Insomnia, Apidog и другим. Из плюсов - открытый код под лицензией MIT и сравнительно небольшой размер всего 60МБ (удивительно мало для настольного приложения по нынешним временам). Автор явно нацелен на коммерциализацию, но пока берет плату только за коммерческое использование. По бизнес модели больше похоже на классическое приобретение лицензии на ПО, а не на подписочный облачный сервис
- Will there ever be a worse time to start a startup? - очередной отличный текст от Бена Стенсила о том что сейчас стоимость разработки падает на 10% ежемесячно и что для стартапов это реальный вызов и он задается вопросом: Не худшее ли сейчас время для запуска стартапа? Хороший вопрос, весьма точный. ИИ реально поглощает все что только можно
- Commission and European Investment Bank Group team up to support AI Gigafactories Евросоюз запланировал 20 миллиардов евро на ближайшие годы чтобы сравняться в ИИ гонке с США и Китаем. Как я понимаю из текста инвестиции планируются через Европейский инвестиционный банк (EIB) и расходы будут проводится открытыми тендерами.
- Wikipedia urges AI companies to use its paid API, and stop scraping команда Википедии продолжает призывать ИИ компании использовать их платное API, вместо скрейпинга. По мне так это глас вопиющего в пустыне потому
почти все ИИ агенты по умолчанию точно используют открытые дампы и контент с веб-страниц и чтобы они перестали это делать Википедии придется перестать быть собой и начать закрываться гораздо более агрессивно что не остановит ИИ боты, но приведет к ещё большей потере трафика. Не могу пока разглядеть в происходящем стратегии с потенциально позитивным исходом.
- AI in State Government доклад о применении ИИ в госуправлении в правительствах штатов США. Полезно большим числом примеров того как ИИ агенты и ИИ в принципе применяют. С оговоркой что доклад от аналитиков из подразделения IBM работающего с госухой в США, так что кейсы интересные, но как научную работу рассматривать не стоит. Скорее как анализ рынка консультантами.
#opendata #ai #wikipedia #government
GitHub
GitHub - mountain-loop/yaak: The most intuitive desktop API client. Organize and execute REST, GraphQL, WebSockets, Server Sent…
The most intuitive desktop API client. Organize and execute REST, GraphQL, WebSockets, Server Sent Events, and gRPC 🦬 - mountain-loop/yaak
👍5