Ivan Begtin
9.31K subscribers
2.08K photos
3 videos
102 files
4.81K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts ivan@begtin.tech
Download Telegram
В блоге Clickhouse хороший разбор того как локальная версия clickhouse-local может использоваться для аналитики [1]. Фактически это про то что Clickhouse в локальной версии - это прекрасная альтернатива DuckDB. В общем-то и раньше не было сомнений, но тут ещё и хороший текст. Это же, кстати, делает Clickhouse хорошей СУБД для обучения студентов работе с данными.

Впрочем корректнее всего сравнивать DuckDB, Clickhouse и другие подобные базы даже не с СУБД, а с инструментами вроде csvkit, textql и тд. поскольку они заменяют именно их при работе с локальными CSV, JSON и другими файлами. Но и тут clickhouse интересен поддержкой очень большого числа форматов и типов файлов прямо из коробки [2].

Хороший продукт, главное чтобы его бесплатные возможности не "растерялись" при его коммерческом развитии.

Ссылки:
[1] https://clickhouse.com/blog/extracting-converting-querying-local-files-with-sql-clickhouse-local
[2] https://clickhouse.com/docs/en/sql-reference/formats

#data #datatools #analytics
Свежие картинки по LLMops Market Map от CB Insights [1]. Все эти картинки, симпатичные, но они лишь визуально иллюстрируют рынок AI/LLM/Generative AI и инвестиции в него.

Лично мне среди AI продуктов интереснее всего развитие поисковиков по данным и продукты по автоматизации (ИИзации) аналитики по данным. Уже есть несколько стартапов обещающих автоматизацию построения дашбордов на основе клиентских данных.

Ссылки:
[1] https://www.cbinsights.com/research/large-language-model-operations-llmops-market-map/

#ai #analytics #llmops
В рубрике интересных проектов на данных OSS Insight [1] открытая аналитическая платформа по репозиториям в Github с аналитикой по каждому репозиторию, пользователям, языкам разработки и ещё много чему извлеченному из Github. Полезно для вылавливания новых продуктов и понимания их популярности и построения своих дашбордов по продуктам с открытым кодом.

Что интересно - так это всё является ничем иным как демкой работы облачного движка TiDB [2] в виде распределённой SQL базы данных. Причём демки достаточно живой, с демонстрацией конкретных SQL запросов построенных по этой базе, возможностью преобразовывать текст в SQL запросы и тд. В общем-то какое-то количество хайповых фич, но при этом и открытый продукт как демка коммерческого.

Это всё к вопросу о том, например, почему так полезны открытые данные в том числе. Потому что на их основе можно делать вот такие продукты.

Причём понятно почему выбраны данные именно Github'а. Потому что это открытая экосистема понятная всем разработчикам. Это к вопросу о создании его альтернатив, потому что настоящих альтернатив почти нет.

Ссылки:
[1] https://ossinsight.io
[2] https://www.pingcap.com/tidb-serverless/

#opensource #analytics #dataviz #github
This media is not supported in your browser
VIEW IN TELEGRAM
Свежий любопытный инструмент для автоматизации работы аналитика: Thread [1], автоматизирует Jupyter Notebook с помощью API OpenAI, позволяет автозаполнять таблицы, генерировать код и визуализацию.

Выглядит симпатично, для многих задач это просто полезно. Как минимум хорошо ускоряет работу опытных аналитиков.

Автор явно создал движок под облачный стартап где такое будет из коробки.

И да, открытый код под лицензией AGPL3. Кстати явный видный тренд применения GPL/AGPL в современном исходном коде, но не от идеалов FSF, а именно для того чтобы не ограничивать себя в создании стартапа и бизнеса, но ограничивать в этом всех остальных.

Ссылки:
[1] https://github.com/squaredtechnologies/thread

#opensource #ai #analytics #dataviz #jupyter
Для тех кто любит заниматься дата сторителлингом (журналисты, аналитики) новый полезный инструмент Closeread [1] позволяющий рассказывать истории внутри HTML документов open source системы документирования Quarto [2].

Quarto сама по себе удобная система и я лично давно смотрю на неё с разных сторон и хочу применить в деле. А Closeread ещё и приближает её к задачам рассказывания историй.

И всё это в Markdown, расширяемо, и тд.

А ещё интересно для публикации научных статей, уже есть примеры их подготовки в Quarto и множество шаблонов [3].

Куда ни посмотри, отличный инструмент.

Ссылки:
[1] https://closeread.netlify.app
[2] https://quarto.org
[3] https://github.com/quarto-journals

#opensource #datajournalism #analytics #datadocs #tools
Вот прям очень интересное исследование от Сбериндекса со многих точек зрения, но главное - это взгляд на проблемы работы с муниципальными данными
#analytics #opendata
Не успела появится профессия BI Engineer как её скоро заменит AI [1]. Полезная статья в блоге Rill о применении AI для корпоративной аналитики.

Это, кстати, вполне реалистичное применение технологий. Вместо построения дашбордов использование естественного языка для получения аналитики. Правда аналитики останутся без работы даже быстрее чем многие другие профессии. Потому что ничто не мешает членам совета директоров хотья прямо на совещании делать промпты на естественном языке к языковой модели которая имеет доступ к корпоративному хранилищу и получать почти моментальные ответы.

Ссылки:
[1] https://www.rilldata.com/blog/bi-as-code-and-the-new-era-of-genbi

#bi #analytics #ai #thoughts
Свежий годовой отчет Cloudflare о связности интернета и основных трендах [1]. Интересно хотя бы из-за масштаба Cloudflare, его однозначно можно отнести к компании управляющей глобальной критичной инфраструктурой.

Несколько быстрых фактов из их отчета:
- Chrome по прежнему доминирующий браузер в мире с более чем 65.8%. Далее Safari со значимыми 15.5%, Edge с 6.9% и Firefox с 4%
- Google по прежнему доминирует в поиске с 88.5%, но, на втором месте идёт Яндекс с 3.1%. Baidu и Bing от Яндекс'а отстают
- GoogleBot создаёт наибольшую нагрузку на веб сайты чем все остальные боты
- AI краулер Bytespider от Bytedance значительно уменьшил сбор данных в 2024 году, а ClaudeBot от Anthropic существенно подрос
- интернет трафик через StarLink вырос в 3.3 раза. После доступности сервиса StarLink у нескольких стран трафик вырос в десятки и даже сотни раз.

И там ещё много всего любопытного, а также у них есть интересный продукт Cloudflare Radar с открытой аналитикой и данными и API.

Кстати, очень показательный пример [2] дата продукта, дашборда, продукта дата аналитики и тд. Потому что это качественное совмещение визуализации и возможности самостоятельно работать с данными через API.

Ссылки:
[1] https://blog.cloudflare.com/radar-2024-year-in-review/
[2] https://radar.cloudflare.com

#opendata #datasets #analytics #readings
В рубрике интересных проектов на данных Open Syllabus [1] проект по агрегации (скрейпингу) учебных программ по всему миру и составлению рейтингов издателей, авторов, книг популярных в разных учебных дисциплинах.

Проект изначально некоммерческий создан исследователями Колумбийского университета, сейчас поддерживается одноимённой НКО и включает общедоступные функции и интерфейсы и аналитику за платную подписку.

Важная особенность - это охват только англоязычной литературы, зато охват очень широкий. На конец марта 2025 года там были данные по :
- 5 691 университету/школе
- 94 076 издателям
- 1 911 596 авторам
- почти 3 миллионам книг и публикаций из которых 1 миллион книг и около 2 миллионов статей

Самая популярная книга глобально - это Calculus авторством James Stewart, а, к примеру, в компьютерных науках это Introduction to Algorithms за авторством T. H. Corman.

Из минусов - создатели проекта явным образом скрыли датасеты которые раньше отдавали и API для доступа к материалам, хотя оно точно было [2], и закрыли код, есть лишь только его остатки за 2016 год [3].

Тем не менее проект остаётся интересным и полезным. Аналогичные проекты на других языках: немецком, испанском, русском, французском и других были бы востребованы.

Ссылки:
[1] https://www.opensyllabus.org
[2] https://johnskinnerportfolio.com/blog/ospapi.html
[3] https://github.com/davidmcclure/open-syllabus-project

#syllabus #openprojects #analytics #dataviz
Очень любопытный подход к созданию каталогов данных для распространения тяжёлых датасетов бесплатно 0$ Data Distribution [1]. Если вкратце то автор воспользовался сервисом Clouflare R2 в опции Egress и используя DuckDB и таблицы Iceberg, распространяя файлы в формате Parquet.

DuckDB там можно заменить на PyIceberg или Snowflake, главное возможность бесплатно подключить и захостить данные. У автора хорошее демо [2] с тем как это работает, ограничения только в том что надо вначале, достаточно быстро и автоматически получить ключ доступа к каталогу, но это как раз не проблема.

Это, с одной стороны, выглядит как чистый лайфхак ибо Cloudflare может изменить ценовую политику, а с другой очень даже полезная модель применения.

И сама работа с таблицами используя Apache Iceberg [3]. Если вы ещё не читали об этом подходе и инструменте, то стоит уделить время. Это тот случай когда каталог данных существует в дата инженерном контексте, а то есть по автоматизации работы с данными, но без СУБД. Однако поверх Iceberg можно построить свои системы управления данными, как открытые так и не очень. Это одна из фундаментальных технологий в том смысле что из неё и других как конструктор можно собрать свой дата продукт.

Ссылки:
[1] https://juhache.substack.com/p/0-data-distribution
[2] https://catalog.boringdata.io/dashboard/
[3] https://iceberg.apache.org/

#opensource #datacatalogs #dataengineering #analytics
Любопытный проект Local deep research [1] локальный privacy-first инструмент для постановки заданий LLM для комплексных исследований. По аналогии с режимами deep research в OpenAI, Perplexity и других облачных прдуктах.

Описание очень симпатично и кажется практичным, но лично у меня с первой попытки не завелось, исследования по темам Recent development in CSV files analysis и Recent development in automatic data analysis не принесли никаких результатов.

Наверняка дело в настройках, но, как бы, из коробки не заработало. Тем не менее, несомненно, инструмент интересный.

Впрочем это не единственный инструмент, есть ещё deep-searcher [2] который тоже умеет искать с использованием разных моделей и возвращать результаты локально.

Ссылки:
[1] https://github.com/LearningCircuit/local-deep-research
[2] https://github.com/zilliztech/deep-searcher

#opensource #ai #research #analytics