Свежие картинки по LLMops Market Map от CB Insights [1]. Все эти картинки, симпатичные, но они лишь визуально иллюстрируют рынок AI/LLM/Generative AI и инвестиции в него.
Лично мне среди AI продуктов интереснее всего развитие поисковиков по данным и продукты по автоматизации (ИИзации) аналитики по данным. Уже есть несколько стартапов обещающих автоматизацию построения дашбордов на основе клиентских данных.
Ссылки:
[1] https://www.cbinsights.com/research/large-language-model-operations-llmops-market-map/
#ai #analytics #llmops
Лично мне среди AI продуктов интереснее всего развитие поисковиков по данным и продукты по автоматизации (ИИзации) аналитики по данным. Уже есть несколько стартапов обещающих автоматизацию построения дашбордов на основе клиентских данных.
Ссылки:
[1] https://www.cbinsights.com/research/large-language-model-operations-llmops-market-map/
#ai #analytics #llmops
В рубрике интересных проектов на данных OSS Insight [1] открытая аналитическая платформа по репозиториям в Github с аналитикой по каждому репозиторию, пользователям, языкам разработки и ещё много чему извлеченному из Github. Полезно для вылавливания новых продуктов и понимания их популярности и построения своих дашбордов по продуктам с открытым кодом.
Что интересно - так это всё является ничем иным как демкой работы облачного движка TiDB [2] в виде распределённой SQL базы данных. Причём демки достаточно живой, с демонстрацией конкретных SQL запросов построенных по этой базе, возможностью преобразовывать текст в SQL запросы и тд. В общем-то какое-то количество хайповых фич, но при этом и открытый продукт как демка коммерческого.
Это всё к вопросу о том, например, почему так полезны открытые данные в том числе. Потому что на их основе можно делать вот такие продукты.
Причём понятно почему выбраны данные именно Github'а. Потому что это открытая экосистема понятная всем разработчикам. Это к вопросу о создании его альтернатив, потому что настоящих альтернатив почти нет.
Ссылки:
[1] https://ossinsight.io
[2] https://www.pingcap.com/tidb-serverless/
#opensource #analytics #dataviz #github
Что интересно - так это всё является ничем иным как демкой работы облачного движка TiDB [2] в виде распределённой SQL базы данных. Причём демки достаточно живой, с демонстрацией конкретных SQL запросов построенных по этой базе, возможностью преобразовывать текст в SQL запросы и тд. В общем-то какое-то количество хайповых фич, но при этом и открытый продукт как демка коммерческого.
Это всё к вопросу о том, например, почему так полезны открытые данные в том числе. Потому что на их основе можно делать вот такие продукты.
Причём понятно почему выбраны данные именно Github'а. Потому что это открытая экосистема понятная всем разработчикам. Это к вопросу о создании его альтернатив, потому что настоящих альтернатив почти нет.
Ссылки:
[1] https://ossinsight.io
[2] https://www.pingcap.com/tidb-serverless/
#opensource #analytics #dataviz #github
This media is not supported in your browser
VIEW IN TELEGRAM
Свежий любопытный инструмент для автоматизации работы аналитика: Thread [1], автоматизирует Jupyter Notebook с помощью API OpenAI, позволяет автозаполнять таблицы, генерировать код и визуализацию.
Выглядит симпатично, для многих задач это просто полезно. Как минимум хорошо ускоряет работу опытных аналитиков.
Автор явно создал движок под облачный стартап где такое будет из коробки.
И да, открытый код под лицензией AGPL3. Кстати явный видный тренд применения GPL/AGPL в современном исходном коде, но не от идеалов FSF, а именно для того чтобы не ограничивать себя в создании стартапа и бизнеса, но ограничивать в этом всех остальных.
Ссылки:
[1] https://github.com/squaredtechnologies/thread
#opensource #ai #analytics #dataviz #jupyter
Выглядит симпатично, для многих задач это просто полезно. Как минимум хорошо ускоряет работу опытных аналитиков.
Автор явно создал движок под облачный стартап где такое будет из коробки.
И да, открытый код под лицензией AGPL3. Кстати явный видный тренд применения GPL/AGPL в современном исходном коде, но не от идеалов FSF, а именно для того чтобы не ограничивать себя в создании стартапа и бизнеса, но ограничивать в этом всех остальных.
Ссылки:
[1] https://github.com/squaredtechnologies/thread
#opensource #ai #analytics #dataviz #jupyter
Для тех кто любит заниматься дата сторителлингом (журналисты, аналитики) новый полезный инструмент Closeread [1] позволяющий рассказывать истории внутри HTML документов open source системы документирования Quarto [2].
Quarto сама по себе удобная система и я лично давно смотрю на неё с разных сторон и хочу применить в деле. А Closeread ещё и приближает её к задачам рассказывания историй.
И всё это в Markdown, расширяемо, и тд.
А ещё интересно для публикации научных статей, уже есть примеры их подготовки в Quarto и множество шаблонов [3].
Куда ни посмотри, отличный инструмент.
Ссылки:
[1] https://closeread.netlify.app
[2] https://quarto.org
[3] https://github.com/quarto-journals
#opensource #datajournalism #analytics #datadocs #tools
Quarto сама по себе удобная система и я лично давно смотрю на неё с разных сторон и хочу применить в деле. А Closeread ещё и приближает её к задачам рассказывания историй.
И всё это в Markdown, расширяемо, и тд.
А ещё интересно для публикации научных статей, уже есть примеры их подготовки в Quarto и множество шаблонов [3].
Куда ни посмотри, отличный инструмент.
Ссылки:
[1] https://closeread.netlify.app
[2] https://quarto.org
[3] https://github.com/quarto-journals
#opensource #datajournalism #analytics #datadocs #tools
Вот прям очень интересное исследование от Сбериндекса со многих точек зрения, но главное - это взгляд на проблемы работы с муниципальными данными
#analytics #opendata
#analytics #opendata