Полезные ссылки про данные, технологии и не только:
- Про автоматизированное видеонаблюдение на олимпиаде в Париже [1]. Под пэйволом, но в общем-то и так понятно что использует положение об экспериментах в законе об Олимпийских играх во Франции [2]
- Devin, the first AI software engineer [3] AI помощник для программистов от Cognition. Ключевая фишка - он лучше умеет самостоятельно решать Github Issues, успешно около 13.86%. Не учитесь дети на программистов, скоро они останутся без работы! Шутка, а не шутка то что джуниорам придётся нелегко.
- Grok от X.AI (Элон Маск) в открытом коде [4] пока оставлю без комментариев, пусть его потестят и расскажут те кто тестят GPT-подобные модели на регулярной основе
- Croissant: a metadata format for ML-ready datasets [5] стандарт метаданных для ML датасетов. Теперь поддерживается основными платформами Kaggle, HuggingFace и OpenML. Google обещают поддерживать его в Google Dataset Search. Подробнее в спецификации тут [6]
Ссылки:
[1] https://www.lemonde.fr/en/pixels/article/2024/03/03/paris-olympics-2024-testing-on-algorithmic-video-surveillance-of-the-games-begins_6580505_13.html
[2] https://www.lemonde.fr/en/sports/article/2023/04/13/paris-2024-french-parliament-approves-the-olympic-bill-and-its-video-surveillance-flagship-project_6022755_9.html
[3] https://twitter.com/cognition_labs/status/1767548763134964000
[4] https://github.com/xai-org/grok-1
[5] https://blog.research.google/2024/03/croissant-metadata-format-for-ml-ready.html
[6] https://mlcommons.org/working-groups/data/croissant/
#data #datatools #privacy #ml #opendata #ai
- Про автоматизированное видеонаблюдение на олимпиаде в Париже [1]. Под пэйволом, но в общем-то и так понятно что использует положение об экспериментах в законе об Олимпийских играх во Франции [2]
- Devin, the first AI software engineer [3] AI помощник для программистов от Cognition. Ключевая фишка - он лучше умеет самостоятельно решать Github Issues, успешно около 13.86%. Не учитесь дети на программистов, скоро они останутся без работы! Шутка, а не шутка то что джуниорам придётся нелегко.
- Grok от X.AI (Элон Маск) в открытом коде [4] пока оставлю без комментариев, пусть его потестят и расскажут те кто тестят GPT-подобные модели на регулярной основе
- Croissant: a metadata format for ML-ready datasets [5] стандарт метаданных для ML датасетов. Теперь поддерживается основными платформами Kaggle, HuggingFace и OpenML. Google обещают поддерживать его в Google Dataset Search. Подробнее в спецификации тут [6]
Ссылки:
[1] https://www.lemonde.fr/en/pixels/article/2024/03/03/paris-olympics-2024-testing-on-algorithmic-video-surveillance-of-the-games-begins_6580505_13.html
[2] https://www.lemonde.fr/en/sports/article/2023/04/13/paris-2024-french-parliament-approves-the-olympic-bill-and-its-video-surveillance-flagship-project_6022755_9.html
[3] https://twitter.com/cognition_labs/status/1767548763134964000
[4] https://github.com/xai-org/grok-1
[5] https://blog.research.google/2024/03/croissant-metadata-format-for-ml-ready.html
[6] https://mlcommons.org/working-groups/data/croissant/
#data #datatools #privacy #ml #opendata #ai
Le Monde.fr
Paris Olympics 2024: Testing on algorithmic video surveillance of the Games begins
Authorized by a law for the Olympic Games, so-called 'augmented' video surveillance will be tested for the first time at two Depeche Mode concerts in Paris on Sunday, March 3, and Tuesday, March 5.
Данные которые не скачать напрямую, но которые всё ещё открытые данные.
Есть такая особенность у данных машинного обучения что каталоги и реестры для их публикации часто не содержат прямых ссылок на файлы или же доступ по прямым ссылкам не является основнным. Это кажется очень странным, но это так. Вместо этого они содержат ... код для доступа к датасетам.
Те кто занимается задачами по data science к такому привычны давно, те кто использует другие инструменты могут находить это весьма необычным.
Вот несколько примеров:
- Tensorflow Catalog [1] каталог наборов данных к продукту Tensorflow, по каждому датасету есть информация о первоисточнике, объёму и способу подключения используя Tensorflow
- UC Irvine Machine Learning Repository [2] каталог датасетов для машинного обучения. Кроме ссылки на выгрузку, генерируется код для Python, а для каталога есть специальная открытая библиотека
- аналогично с каталогом датасетов Pytorch [3], сразу код для импорта и это логично ведь он часть библиотеки
Не говоря уже о Kaggle и HuggingFace, там такой режим доступа по умолчанию. Можно сказать что это code - first стратегия для работы с данными.
Один из интересных вопросов в том как индексировать такие датасеты. Помимо того что все такие каталоги написаны очень по своему, так ещё и получается что у них нет такого понятия как ресурсы, файлы или ссылки, в ситуации когда доступ только через API. Зато есть автогенерация кода, причём, в основном сразу в Python.
Это одна из причин почему в Dateno пока ещё мало датасетов по Machine Learning, все каталоги в этой области очень специфичны и не все дают возможность индексировать их просто и давать ссылки на файлы.
Но, конечно, вскоре и они будут добавлены
Ссылки:
[1] https://www.tensorflow.org/datasets/catalog/overview
[2] https://archive.ics.uci.edu/
[3] https://pytorch.org/vision/stable/datasets.html
[4] https://paperswithcode.com/dataset/cityscapes
#opendata #datasets #datacatalogs #ml #datascience #python
Есть такая особенность у данных машинного обучения что каталоги и реестры для их публикации часто не содержат прямых ссылок на файлы или же доступ по прямым ссылкам не является основнным. Это кажется очень странным, но это так. Вместо этого они содержат ... код для доступа к датасетам.
Те кто занимается задачами по data science к такому привычны давно, те кто использует другие инструменты могут находить это весьма необычным.
Вот несколько примеров:
- Tensorflow Catalog [1] каталог наборов данных к продукту Tensorflow, по каждому датасету есть информация о первоисточнике, объёму и способу подключения используя Tensorflow
- UC Irvine Machine Learning Repository [2] каталог датасетов для машинного обучения. Кроме ссылки на выгрузку, генерируется код для Python, а для каталога есть специальная открытая библиотека
- аналогично с каталогом датасетов Pytorch [3], сразу код для импорта и это логично ведь он часть библиотеки
Не говоря уже о Kaggle и HuggingFace, там такой режим доступа по умолчанию. Можно сказать что это code - first стратегия для работы с данными.
Один из интересных вопросов в том как индексировать такие датасеты. Помимо того что все такие каталоги написаны очень по своему, так ещё и получается что у них нет такого понятия как ресурсы, файлы или ссылки, в ситуации когда доступ только через API. Зато есть автогенерация кода, причём, в основном сразу в Python.
Это одна из причин почему в Dateno пока ещё мало датасетов по Machine Learning, все каталоги в этой области очень специфичны и не все дают возможность индексировать их просто и давать ссылки на файлы.
Но, конечно, вскоре и они будут добавлены
Ссылки:
[1] https://www.tensorflow.org/datasets/catalog/overview
[2] https://archive.ics.uci.edu/
[3] https://pytorch.org/vision/stable/datasets.html
[4] https://paperswithcode.com/dataset/cityscapes
#opendata #datasets #datacatalogs #ml #datascience #python
- автоматизация обогащения данных, также напрямую зависит от задач по пониманию данных. Если мы знаем семантические типы данных то можем автоматически данные обогатить. Например, в данных есть коды стран, мы можем автоматически обогатить датасет информацией о макрорегионе, о размере территории, численности жителей, GDP, уровню дохода и тд. Особенно это важно при автоматизации визуализации данных, это резко сокращает время подготовки данных для дата аналитиков и дата журналистов.
- мэтчинг записей, очень распространённая задача связанная с данными об организациях и / или людях и/или адресах, недвижимости, имуществе и так далее. Это необходимость сопоставлять записи по наборам идентификаторов, не всегда нормализованных. Задача практическая во всех продуктах связанных с комплаенсом и анализе конкурентов.
- Автоматическая визуализация данных. Зависит от многих задач по пониманию данных, но даже когда и если известны типы полей и структура файла, отдельная задача в том как автоматически визуализировать датасет наиболее наглядным образом. Как сузить зону отображения для геоданных. Как лучше всего визуализировать статистические данные. Как визуализировать не статистические. Как избежать "перегрузки изображения" и ещё многое другое. Это задачи Auto-BI, понемногу решаются в частных случаев, и пока не решены в общем.
Кроме того ещё ещё немало ML задач в таких направлениях как обнаружение данных, извлечение данных, поиск данных и ещё многое другое, об этом я ещё думаю и напишу в одном из последующих постов.
Лично для себя, когда я смотрю на ML и data science то меня цепляют только вот такие задачи. Не самого прямого практического применения (это не распознавание людей или распознавание речи, к примеру), а именно в применении к данным как предмету исследований, а не как инструменту исследований.
#opendata #data #datascience #ml #machinelearning
- мэтчинг записей, очень распространённая задача связанная с данными об организациях и / или людях и/или адресах, недвижимости, имуществе и так далее. Это необходимость сопоставлять записи по наборам идентификаторов, не всегда нормализованных. Задача практическая во всех продуктах связанных с комплаенсом и анализе конкурентов.
- Автоматическая визуализация данных. Зависит от многих задач по пониманию данных, но даже когда и если известны типы полей и структура файла, отдельная задача в том как автоматически визуализировать датасет наиболее наглядным образом. Как сузить зону отображения для геоданных. Как лучше всего визуализировать статистические данные. Как визуализировать не статистические. Как избежать "перегрузки изображения" и ещё многое другое. Это задачи Auto-BI, понемногу решаются в частных случаев, и пока не решены в общем.
Кроме того ещё ещё немало ML задач в таких направлениях как обнаружение данных, извлечение данных, поиск данных и ещё многое другое, об этом я ещё думаю и напишу в одном из последующих постов.
Лично для себя, когда я смотрю на ML и data science то меня цепляют только вот такие задачи. Не самого прямого практического применения (это не распознавание людей или распознавание речи, к примеру), а именно в применении к данным как предмету исследований, а не как инструменту исследований.
#opendata #data #datascience #ml #machinelearning
Dateno
Dateno - datasets search engine
Search engine for datasets