Видеозаписи прошедших семинаров:
- "Лучшие практики работы с большими научными данными: используем Parquet и DuckDB" доступен на сайте ИВ РАН или напрямую на RuTube или на YouTube
- "Дата-инженерия в цифровой гуманитаристике" доступен в сообществе в VK и в YouTube
Если кому-то будут интересны презентации с этих семинаров, напишите в комментарии, я их выложу онлайн или пришлю ссылку.
Честно говоря я давно не читал лекций и не выступал, сначала
Ближайшие мои выступления или мастер-классы будут в рамках дня открытых данных в России и в Армении, скорее и там, и там.
P.S. Ссылки на презентации:
- Дата инженерия в цифровой гуманитаристике
- Лучшие практики работы с большими научными данными. Используем Parquet и DuckDB
#opendata #digitalhumanities #lectures #parquet #duckdb #dataengineering
- "Лучшие практики работы с большими научными данными: используем Parquet и DuckDB" доступен на сайте ИВ РАН или напрямую на RuTube или на YouTube
- "Дата-инженерия в цифровой гуманитаристике" доступен в сообществе в VK и в YouTube
Если кому-то будут интересны презентации с этих семинаров, напишите в комментарии, я их выложу онлайн или пришлю ссылку.
Честно говоря я давно не читал лекций и не выступал, сначала
Ближайшие мои выступления или мастер-классы будут в рамках дня открытых данных в России и в Армении, скорее и там, и там.
P.S. Ссылки на презентации:
- Дата инженерия в цифровой гуманитаристике
- Лучшие практики работы с большими научными данными. Используем Parquet и DuckDB
#opendata #digitalhumanities #lectures #parquet #duckdb #dataengineering
В ответ на список любви к CSV формату, я напишу свои 5 пунктов в пользу формата данных Parquet:
1. Parquet гораздо компактнее CSV и других форматов которые в него преобразуют, даже если они сжаты. Колоночное сжатие в Parquet работает гораздо эффективнее и это особенно ярко ощущается на денормализованных данных, например, статпоказателях в формате плоских файлов в режиме "1 строка=1 значение".
2. Parquet позволяет работать с данными как с базами данных позволяя на недорогих устройствах работать с данными большого объёма и быстро выполнять аналитические запросы.
3. Parquet имеет строгую схему описания и хорошую типизацию полей, а большая часть инструментов по работе с ним умеют определять типы данных динамически при создании Parquet файлов.
4. Parquet может иметь вложенные объекты в отличие от CSV файлов в Parquet есть возможность хранить структурированные вложенные объекты и Parquet файлы могут создаваться на базе JSON / NDJSON / JSON lines файлов
5. Все современные аналитические инструменты работы с данными умеют работать с этим форматом это Pandas, Polars, Clickhouse, DuckDB и многие другие. Новые инструменты появляются ежегодно и работают всё более производительно.
#data #dataformats #csv #parquet
1. Parquet гораздо компактнее CSV и других форматов которые в него преобразуют, даже если они сжаты. Колоночное сжатие в Parquet работает гораздо эффективнее и это особенно ярко ощущается на денормализованных данных, например, статпоказателях в формате плоских файлов в режиме "1 строка=1 значение".
2. Parquet позволяет работать с данными как с базами данных позволяя на недорогих устройствах работать с данными большого объёма и быстро выполнять аналитические запросы.
3. Parquet имеет строгую схему описания и хорошую типизацию полей, а большая часть инструментов по работе с ним умеют определять типы данных динамически при создании Parquet файлов.
4. Parquet может иметь вложенные объекты в отличие от CSV файлов в Parquet есть возможность хранить структурированные вложенные объекты и Parquet файлы могут создаваться на базе JSON / NDJSON / JSON lines файлов
5. Все современные аналитические инструменты работы с данными умеют работать с этим форматом это Pandas, Polars, Clickhouse, DuckDB и многие другие. Новые инструменты появляются ежегодно и работают всё более производительно.
#data #dataformats #csv #parquet