2025 год закончился, пора переходить к предсказаниям на 2026 и вот мой набор необязательно самых реалистичных, но вполне возможных предсказаний.
1. Резкий рост безработицы в ИТ и больше увольнений в цифровых компаниях.
Включая сокращения 15-25% в крупных компаниях. Затронет сильно неопытных специалистов и тех кто "спокойно сидит, примус починяет". Стоимость опытных специалистов, наоборот, вырастет. Это будет большая перетряска отрасли в целом, болезненная для тех кто в нее только вступил. Соответственно и резкие взлёты и банкротства тоже будут иметь место гораздо больше чем раньше.
2. Первые эксперименты радикальной ИИзации городов.
До конца года начнется или будет объявлено что начнется переход от цифровизации городов к ИИзации с ключевой идеей создания "мозга города" который бы в реальном времени собирал данные, отслеживал инциденты, управлял бы транспортными потоками и так далее. Все цифровые процессы были бы завязаны на этот ИИ, а люди выступали бы наблюдателями там где нельзя автоматизировать датчиками и "руками" там где роботизированные платформы и инструменты не работают. Управление транспортом будет включать централизованный перехват управления автомобилем для въезжающих в город.
3. Включение ударов по ИИ ЦОДам в изменения ядерных доктрин государств.
Может не всех государств, может публично об этом не заявят, но я думаю что заявят просто не голосами первых лиц. Крупнейшие ЦОДы применимые для ИИ и не только будут обозначены как приоритетные цели.
4. Первые законодательные запреты на гуманоидных роботов
Да, будут страны и территории где гуманоидных роботов будут запрещать явно и законодательно. Минимум - сертификация, максимум полный запрет. Про уничтожение роботов с трансляцией в реальном времени не пишу - это и так очевидно. Будут ломать всеми возможными способами при их появлении в публичных пространствах.
5. Резкое ужесточение всех экзаменов и применение тотального прокторинга
Обман на экзаменах достигнет такого масштаба что приведет к созданию экзаменационных центров не имеющих связи с интернетом, с глушилками связи, суровыми последствиями нарушений правил и огромными штрафами за нарушения (хорошо хоть не уголовные дела). Будет взлет стартапов обеспечивающих такие экзаменационные центры цифровой начинкой - камеры, ИИ для мониторинга и тд.
Всех с Новым годом! И делитесь Вашими предсказаниями, вероятными, но не самыми очевидными!😎
#thoughts #ideas #happynewyear
1. Резкий рост безработицы в ИТ и больше увольнений в цифровых компаниях.
Включая сокращения 15-25% в крупных компаниях. Затронет сильно неопытных специалистов и тех кто "спокойно сидит, примус починяет". Стоимость опытных специалистов, наоборот, вырастет. Это будет большая перетряска отрасли в целом, болезненная для тех кто в нее только вступил. Соответственно и резкие взлёты и банкротства тоже будут иметь место гораздо больше чем раньше.
2. Первые эксперименты радикальной ИИзации городов.
До конца года начнется или будет объявлено что начнется переход от цифровизации городов к ИИзации с ключевой идеей создания "мозга города" который бы в реальном времени собирал данные, отслеживал инциденты, управлял бы транспортными потоками и так далее. Все цифровые процессы были бы завязаны на этот ИИ, а люди выступали бы наблюдателями там где нельзя автоматизировать датчиками и "руками" там где роботизированные платформы и инструменты не работают. Управление транспортом будет включать централизованный перехват управления автомобилем для въезжающих в город.
3. Включение ударов по ИИ ЦОДам в изменения ядерных доктрин государств.
Может не всех государств, может публично об этом не заявят, но я думаю что заявят просто не голосами первых лиц. Крупнейшие ЦОДы применимые для ИИ и не только будут обозначены как приоритетные цели.
4. Первые законодательные запреты на гуманоидных роботов
Да, будут страны и территории где гуманоидных роботов будут запрещать явно и законодательно. Минимум - сертификация, максимум полный запрет. Про уничтожение роботов с трансляцией в реальном времени не пишу - это и так очевидно. Будут ломать всеми возможными способами при их появлении в публичных пространствах.
5. Резкое ужесточение всех экзаменов и применение тотального прокторинга
Обман на экзаменах достигнет такого масштаба что приведет к созданию экзаменационных центров не имеющих связи с интернетом, с глушилками связи, суровыми последствиями нарушений правил и огромными штрафами за нарушения (хорошо хоть не уголовные дела). Будет взлет стартапов обеспечивающих такие экзаменационные центры цифровой начинкой - камеры, ИИ для мониторинга и тд.
Всех с Новым годом! И делитесь Вашими предсказаниями, вероятными, но не самыми очевидными!
#thoughts #ideas #happynewyear
Please open Telegram to view this post
VIEW IN TELEGRAM
😱9😁6🐳6❤5⚡5🤔4✍3🙏3👍2
Я неоднократно писал про такой продукт с открытым кодом OpenRefine, он малоизвестен в дата инженерной и корпоративно аналитической среде, но хорошо известен многим журналистам расследователям, аналитикам работающим над публикацией данных, всем кто работает в среде с интеграциями в Википедией и Викидатой и многим цифровым библиотекарям, архивистам и тд.
OpenRefine изначально вырос из проекта Google Refine который, в свою очередь, разрабатывался внутри проекта FreeBase который после поглощения Google превратился в Google Knowledge Graph.
OpenRefine позволяет вручную и полувручную, с использованием языка GREL (General Refine Expression Language) или кода на Jython через веб интерфейс чистить табличные наборы данных и сохранять их в CSV и я ряде других форматов. Никакого SQL, сложного кода, зато бесконечный цикл Undo/Redo.
Можно сказать что OpenRefine - это инструмент подготовки данных выросший из экосистемы управления знаниями. Явление он довольно редкое, и сам продукт довольно интересный, но не без ограничений.
Потому что внутри него не СУБД, а граф объектов на Java что резко ограничивало и ограничивает объемы редактируемых датасетов до 100 тысяч записей максимум. Но всё это с удобным UI и возможностью работать чистить данные без глубокого технического погружения в протоколы, SQL запросы и разработку кода.
Какое-то время назад я думал о том не создать ли более эффективную альтернативу OpenRefine. Даже экспериментировал с созданием обвязки с помощью MongoDB mongorefine что было очень прикольным опыт и тренировкой для мозгов, но совершенно точно непригодно для реальной работы потому что MongoDB даёт большую гибкость и очень низкую скорость обработки данных. Это был эксперимент, отложенный для дальнейших размышлений.
Сейчас посмотрев на OpenRefine и его развитие свежим взглядом я могу сказать следующее:
1. Да, с помощью LLM можно очень быстро сделать его аналог, с изначально более-правильной архитектурой на базе Polars + DuckLake или Iceberg, с разделением бэкэнда и фронтэнда/фронтэндов и превратить его в инструмент обогащения данных с помощью LLM и не только.
2. При этом у него очень понятная аудитория, инструмент мог бы быть коммерческим или некоммерческим, важнее что он точно будет востребован
В общем это стало выполнимой задачей, даже для очень небольшой команды в очень обозримые сроки. Но вот я пока довольно активно занят задачами в рамках Dateno что лично для меня даже более интересная задача и несравнимо больший вызов.
Поэтому широко делюсь идеей про создание инструмента очистки и обогащение данных с интерфейсом а ля OpenRefine, но с возможностью очищать и обогащать датасеты в миллионы записей и гигабайтного размера.
#opendata #opensource #ideas #dataquality #dataenrichment
OpenRefine изначально вырос из проекта Google Refine который, в свою очередь, разрабатывался внутри проекта FreeBase который после поглощения Google превратился в Google Knowledge Graph.
OpenRefine позволяет вручную и полувручную, с использованием языка GREL (General Refine Expression Language) или кода на Jython через веб интерфейс чистить табличные наборы данных и сохранять их в CSV и я ряде других форматов. Никакого SQL, сложного кода, зато бесконечный цикл Undo/Redo.
Можно сказать что OpenRefine - это инструмент подготовки данных выросший из экосистемы управления знаниями. Явление он довольно редкое, и сам продукт довольно интересный, но не без ограничений.
Потому что внутри него не СУБД, а граф объектов на Java что резко ограничивало и ограничивает объемы редактируемых датасетов до 100 тысяч записей максимум. Но всё это с удобным UI и возможностью работать чистить данные без глубокого технического погружения в протоколы, SQL запросы и разработку кода.
Какое-то время назад я думал о том не создать ли более эффективную альтернативу OpenRefine. Даже экспериментировал с созданием обвязки с помощью MongoDB mongorefine что было очень прикольным опыт и тренировкой для мозгов, но совершенно точно непригодно для реальной работы потому что MongoDB даёт большую гибкость и очень низкую скорость обработки данных. Это был эксперимент, отложенный для дальнейших размышлений.
Сейчас посмотрев на OpenRefine и его развитие свежим взглядом я могу сказать следующее:
1. Да, с помощью LLM можно очень быстро сделать его аналог, с изначально более-правильной архитектурой на базе Polars + DuckLake или Iceberg, с разделением бэкэнда и фронтэнда/фронтэндов и превратить его в инструмент обогащения данных с помощью LLM и не только.
2. При этом у него очень понятная аудитория, инструмент мог бы быть коммерческим или некоммерческим, важнее что он точно будет востребован
В общем это стало выполнимой задачей, даже для очень небольшой команды в очень обозримые сроки. Но вот я пока довольно активно занят задачами в рамках Dateno что лично для меня даже более интересная задача и несравнимо больший вызов.
Поэтому широко делюсь идеей про создание инструмента очистки и обогащение данных с интерфейсом а ля OpenRefine, но с возможностью очищать и обогащать датасеты в миллионы записей и гигабайтного размера.
#opendata #opensource #ideas #dataquality #dataenrichment
openrefine.org
General Refine Expression Language | OpenRefine
Basics
👍15❤3✍1🙏1🤝1
Разные мысли вслух, включая безумные😎 :
1. Сервисы автогенерации документации сейчас массово используются для документирования репозиториев (zread.ai и аналоги), но пока не применяются массово для других цифровых коллекций объектов/артефактов. Этот подход переносим на другие комплексные объекты (законы, группы законов и НПА, кадастровые коды территорий, подсети, IP адреса, уголовные или арбитражные дела, муниципалитеты и так далее). Не выглядит безумным
2. Персональные данные умерших кто защищает персональные данные тех кто умер и у кого может уже не быть родственников чьи права могут быть затронуты? Государство может установить правила обработки этих данных с указанием периода защиты по аналогии с авторским правом и отчислениями в специальный государственный фонд, Выглядит безумным 😜, но не нереалистичным и болезненным для бизнеса
3. Rewriter сервис переписывания кода с помощью ИИ применимый для замены продуктов с неприятными лицензиями на приятные. Юридически - поди докажи что права нарушены. Пример, делаем проприетарный продукт в котором хотелось бы использовать инструменты под GPL/AGPL/SSPL, но не хочется открывать код. Быстро наберет популярность на волне хэйта. Не выглядит безумным, но очень специфичным
4. Автоматические порталы данных для стран где нет порталов данных. Это пара десятков стран для которых могут работать автономные ИИ агенты собирающие данные с официальных сайтов, упаковывающие их в наборы данных и публикующие в автоматическом или полуавтоматическом режиме. Актуально для всех очень малых стран где ничего такого нет. Безумным не выглядит, но монетизация тоже маловероятна. Зато перезапуск региональных и городских порталов данных реалистичен.
#opendata #ai #thoughts #ideas
1. Сервисы автогенерации документации сейчас массово используются для документирования репозиториев (zread.ai и аналоги), но пока не применяются массово для других цифровых коллекций объектов/артефактов. Этот подход переносим на другие комплексные объекты (законы, группы законов и НПА, кадастровые коды территорий, подсети, IP адреса, уголовные или арбитражные дела, муниципалитеты и так далее). Не выглядит безумным
2. Персональные данные умерших кто защищает персональные данные тех кто умер и у кого может уже не быть родственников чьи права могут быть затронуты? Государство может установить правила обработки этих данных с указанием периода защиты по аналогии с авторским правом и отчислениями в специальный государственный фонд, Выглядит безумным 😜, но не нереалистичным и болезненным для бизнеса
3. Rewriter сервис переписывания кода с помощью ИИ применимый для замены продуктов с неприятными лицензиями на приятные. Юридически - поди докажи что права нарушены. Пример, делаем проприетарный продукт в котором хотелось бы использовать инструменты под GPL/AGPL/SSPL, но не хочется открывать код. Быстро наберет популярность на волне хэйта. Не выглядит безумным, но очень специфичным
4. Автоматические порталы данных для стран где нет порталов данных. Это пара десятков стран для которых могут работать автономные ИИ агенты собирающие данные с официальных сайтов, упаковывающие их в наборы данных и публикующие в автоматическом или полуавтоматическом режиме. Актуально для всех очень малых стран где ничего такого нет. Безумным не выглядит, но монетизация тоже маловероятна. Зато перезапуск региональных и городских порталов данных реалистичен.
#opendata #ai #thoughts #ideas
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡6❤2🔥1👏1😁1
Полезные ссылки про данные, технологии и не только:
- Open Responses открытая спецификация на API для LLM на базе OpenAI Responses API. Вообще API OpenAI и так уже было стандартом де-факто, а тут уже и формализированный и описанный стандарт. Не вижу какой-то конкретной организации за его разработкой, похоже на частную инициативу
- Using AI as a Design Engineer о работе дизайн инженера с использованием ИИ, многое похоже на разработку ПО в целом, но есть свои особенности вроде интеграции с Figma MCP
- Can A.I. Generate New Ideas? может ли ИИ генерировать новые идеи? Статья в NYT, под пэйволом. Краткое изложение можно прочитать тут
- How UK museums are embracing citizens’ assemblies to help frame their futures интересное явление когда британские музеи начали создавать общественные советы которые должны помогать им определять их будущее
#uk #museums #ai #llms #design #ideas #readings
- Open Responses открытая спецификация на API для LLM на базе OpenAI Responses API. Вообще API OpenAI и так уже было стандартом де-факто, а тут уже и формализированный и описанный стандарт. Не вижу какой-то конкретной организации за его разработкой, похоже на частную инициативу
- Using AI as a Design Engineer о работе дизайн инженера с использованием ИИ, многое похоже на разработку ПО в целом, но есть свои особенности вроде интеграции с Figma MCP
- Can A.I. Generate New Ideas? может ли ИИ генерировать новые идеи? Статья в NYT, под пэйволом. Краткое изложение можно прочитать тут
- How UK museums are embracing citizens’ assemblies to help frame their futures интересное явление когда британские музеи начали создавать общественные советы которые должны помогать им определять их будущее
#uk #museums #ai #llms #design #ideas #readings
www.openresponses.org
Open Responses
Open Responses documentation overview.
✍5⚡2