Команда создателей Datahub [1], каталога управления метаданными от LinkedIn, в 2020 году выделились в отдельный стартап Metaphor и вот в ноябре этого года анонсировали Metaphor Platform [2].
По сути это коммерческая SaaS платформа, аналогичная Datahub, используемая для сбора данных о данных (метаданных), но с разделением на 3 типа метаданных:
- технические метаданных - данные из первоисточиков о структуре, качестве, описании таблиц и тд.
- метаданные бизнеса - мэппинг между физическими данными и их производственным рабочим представлением, от сценариев использования
- поведенческие метаданные - привязывание данных к конкретным пользователям и их поведению.
Сама идея этого интересна, хотя и сужает области применения такого продукта. В этой модели фокус сдвигается на бизнес пользователей и конечных пользователей, а далеко не все системы сбора метаданных эксплуатируются в средах где есть большое число внешних пользователей. Это, то что касается поведенческих метаданных, а то что касается метаданных бизнеса, то тут понятная идея с вовлечением управленцев в понимание данных.
В любом случае продукт ещё только в режиме demo, надо будет за ним последить внимательнее.
Ссылки:
[1] https://engineering.linkedin.com/blog/2019/data-hub
[2] https://metaphor.io/blog/metaphor-product-launch
#metadata #datacatalogs
По сути это коммерческая SaaS платформа, аналогичная Datahub, используемая для сбора данных о данных (метаданных), но с разделением на 3 типа метаданных:
- технические метаданных - данные из первоисточиков о структуре, качестве, описании таблиц и тд.
- метаданные бизнеса - мэппинг между физическими данными и их производственным рабочим представлением, от сценариев использования
- поведенческие метаданные - привязывание данных к конкретным пользователям и их поведению.
Сама идея этого интересна, хотя и сужает области применения такого продукта. В этой модели фокус сдвигается на бизнес пользователей и конечных пользователей, а далеко не все системы сбора метаданных эксплуатируются в средах где есть большое число внешних пользователей. Это, то что касается поведенческих метаданных, а то что касается метаданных бизнеса, то тут понятная идея с вовлечением управленцев в понимание данных.
В любом случае продукт ещё только в режиме demo, надо будет за ним последить внимательнее.
Ссылки:
[1] https://engineering.linkedin.com/blog/2019/data-hub
[2] https://metaphor.io/blog/metaphor-product-launch
#metadata #datacatalogs
Linkedin
DataHub: A generalized metadata search & discovery tool
Co-authors: Mars Lan, Seyi Adebajo, Shirshanka Das
Среди современного стека с данными отдельная тема, о которой я регулярно пишу, это продукты по data discovery, каталоги данных в современном стеке данных. О них было исследование Forrester Wave [1] в середине прошлого года и это такие продукты как Atlan, Alation, Collibra из коммерческих и продукты вроде Amundsen, Datahub и др. из недавно превращённых в открытые продукты с открытым кодом.
Так вот эти продукты переживают сейчас бум развития, инвестиций и пользовательского внимания, потому что уже многие крупные и средние компании накопили команды, наработки, данные и тд. а наведение в этом всём порядка оказывается большой задачей. Вернее задач там много, аналитические, задачи complience и тд.
Полезно посмотреть на два обзора и "каталога каталогов". Один от одного из сотрудников Atlan [2] со списком основных продуктов их конкурентов и кратким описанием каждого.
Другой от CastorDoc [3] с куда более детальным списком и сравнением по областям применения, стоимости и возможностям.
Сейчас это всё довольно сложные платформы, с разными акцентами на управлении метаданными. Лично приглядываюсь к ним потому что многие возможности такой платформы, но в формате открытого каталога, мы реализуем в DataCrafter'е. Например, автоматическая идентификация типов данных есть в Collibra, но пока мало где в других каталогах.
И я, конечно, не могу не обратить внимание насколько технологии Modern Data Stack оторваны от работы с открытыми данными и с исследовательскими данными. Чем больше я изучаю инструментарий технологический, логический и др. тем больше видна разница, между каталогами открытых данных и каталогами корпоративных метаданных. Я бы даже сказал что это разные миры которые практически не пересекаются по форматам данных, способам агрегации данных, способам доступа и так далее.
Ссылки:
[1] https://t.me/begtin/2978
[2] https://www.notion.so/atlanhq/The-Ultimate-Repository-of-Data-Discovery-Solutions-149b0ea2a2ed401d84f2b71681c5a369
[3] https://notion.castordoc.com/catalog-of-catalogs
#datadiscovery #metadata #metadatamanagement #datacatalogs
Так вот эти продукты переживают сейчас бум развития, инвестиций и пользовательского внимания, потому что уже многие крупные и средние компании накопили команды, наработки, данные и тд. а наведение в этом всём порядка оказывается большой задачей. Вернее задач там много, аналитические, задачи complience и тд.
Полезно посмотреть на два обзора и "каталога каталогов". Один от одного из сотрудников Atlan [2] со списком основных продуктов их конкурентов и кратким описанием каждого.
Другой от CastorDoc [3] с куда более детальным списком и сравнением по областям применения, стоимости и возможностям.
Сейчас это всё довольно сложные платформы, с разными акцентами на управлении метаданными. Лично приглядываюсь к ним потому что многие возможности такой платформы, но в формате открытого каталога, мы реализуем в DataCrafter'е. Например, автоматическая идентификация типов данных есть в Collibra, но пока мало где в других каталогах.
И я, конечно, не могу не обратить внимание насколько технологии Modern Data Stack оторваны от работы с открытыми данными и с исследовательскими данными. Чем больше я изучаю инструментарий технологический, логический и др. тем больше видна разница, между каталогами открытых данных и каталогами корпоративных метаданных. Я бы даже сказал что это разные миры которые практически не пересекаются по форматам данных, способам агрегации данных, способам доступа и так далее.
Ссылки:
[1] https://t.me/begtin/2978
[2] https://www.notion.so/atlanhq/The-Ultimate-Repository-of-Data-Discovery-Solutions-149b0ea2a2ed401d84f2b71681c5a369
[3] https://notion.castordoc.com/catalog-of-catalogs
#datadiscovery #metadata #metadatamanagement #datacatalogs
Telegram
Ivan Begtin
Свежее исследование Forrester Wave со сравнением 12 облачных провайдеров управления данными: Aim, Alation, Ataccama, Collibra, Congruity360, data.world, erwin, Infogix, OneTrust, SAP, Solix, Syniti [1]
В лидерах они упоминают Colibra, Alation, Infogix, Atacamma.…
В лидерах они упоминают Colibra, Alation, Infogix, Atacamma.…