Для тех кто интересуется что там с открытыми данными "у них" свежий доклад Open Data Maturity 2021 [1] Европейского союза. Хорошая сравнительная аналитика госполитик, технологий и влияния на цифровые рынки в Евросоюзе.
В лидерах Франция и Ирландия, на последнем месте Грузия и Словакия.
Да, в рейтинге есть Грузия и Украина как кандидаты в ЕС, видимо.
В целом достаточно зрелая методика оценки, правильные акценты на регулировании и экономическом эффекте. По российским регионам такое можно было бы сделать, но нормативных полномочий у них маловато.
Что характерно - нет никаких количественных оценок числа опубликованных наборов данных и их объёма в терабайтах. А почему? А потому что это слишком легко поддаётся манипуляции.
Исследование полезное, рекомендую всем кто интересуется развитием открытости данных.
Ссылки:
[1] https://data.europa.eu/en/dashboard/2021
#opendata #europe #analytics
В лидерах Франция и Ирландия, на последнем месте Грузия и Словакия.
Да, в рейтинге есть Грузия и Украина как кандидаты в ЕС, видимо.
В целом достаточно зрелая методика оценки, правильные акценты на регулировании и экономическом эффекте. По российским регионам такое можно было бы сделать, но нормативных полномочий у них маловато.
Что характерно - нет никаких количественных оценок числа опубликованных наборов данных и их объёма в терабайтах. А почему? А потому что это слишком легко поддаётся манипуляции.
Исследование полезное, рекомендую всем кто интересуется развитием открытости данных.
Ссылки:
[1] https://data.europa.eu/en/dashboard/2021
#opendata #europe #analytics
Автор который всегда радует рассуждениями - это Ben Stancil с его последним текстом о прошлом и будущем OLAP кубов: "The ghosts in the data stack" [1]
Не буду всё пересказывать, общий смысл в том что концепция OLAP кубов устарела когда появились возможности быстро считать метрики поверх больших таблиц в облачных и корпоративных базах данных, а также идея в том что OLAP кубы избыточны и сложны для работы аналитика. В качестве примеров он хороших приводит сайты МВФ и ФРС в Сэнт-Луисе, а в качестве плохого примера сайт переписи США.
Как и во многих случаях хороших рассуждений, с автором есть о чём поспорить, но рассуждения его вполне справедливы. OLAP кубы и отчетопостроители на их основе зачастую построены негуманно для пользователей. Работа с ними требует дополнительных знаний и обучения, неинтуитивна и сильно зависит от природы данных на которых эти OLAP кубы построены.
Стартапы вроде Mode, который Ben Stancil представляет, как раз и создают альтернативы таким OLAP кубам. Но нельзя говорить что OLAP мертв, базы вроде Apache Druid или Clickhouse - это тоже OLAP, модернизированный, но MOLAP, ROLAP и HOLAP и тд. Впрочем в Modern data stack всё более вместо OLAP упоминают headless BI и другие BI продукты поверх хранилищ метрик.
Ссылки:
[1] https://benn.substack.com/p/ghosts-in-the-data-stack
#olap #analytics #data #reading
Не буду всё пересказывать, общий смысл в том что концепция OLAP кубов устарела когда появились возможности быстро считать метрики поверх больших таблиц в облачных и корпоративных базах данных, а также идея в том что OLAP кубы избыточны и сложны для работы аналитика. В качестве примеров он хороших приводит сайты МВФ и ФРС в Сэнт-Луисе, а в качестве плохого примера сайт переписи США.
Как и во многих случаях хороших рассуждений, с автором есть о чём поспорить, но рассуждения его вполне справедливы. OLAP кубы и отчетопостроители на их основе зачастую построены негуманно для пользователей. Работа с ними требует дополнительных знаний и обучения, неинтуитивна и сильно зависит от природы данных на которых эти OLAP кубы построены.
Стартапы вроде Mode, который Ben Stancil представляет, как раз и создают альтернативы таким OLAP кубам. Но нельзя говорить что OLAP мертв, базы вроде Apache Druid или Clickhouse - это тоже OLAP, модернизированный, но MOLAP, ROLAP и HOLAP и тд. Впрочем в Modern data stack всё более вместо OLAP упоминают headless BI и другие BI продукты поверх хранилищ метрик.
Ссылки:
[1] https://benn.substack.com/p/ghosts-in-the-data-stack
#olap #analytics #data #reading
benn.substack
The ghosts in the data stack
An OLAP cube exorcism.
👍6🤔1