The Open Data Canvas–Analyzing Value Creation from Open Data [1] научная статья за авторством Yingyng Gao и Marijn Janssen посвящённая созданию аналога канвы для бизнес модели, но для проектов на открытых данных. Авторы неплохо поработали над структурой канвы, с научной точки зрения интересны полезна их логика рассуждения, с практической - это структура запуска проекта на открытых данных. Составление таких канв проектов полезно когда ты проектируешь новый проект, или в процессе обучения, или, не в меньшей степени, на хакатонах и конкурсах, когда участники вначале проектируют то что они хотят сделать.
В статье примеры канвы по COVID-19 Dashboard, в целом отражающей действительности.
Со своей колокольни я вижу то чего в такой канве не хватает - это устойчивости (sustainability). В канве бизнес-модели этого нет потому что предполагается что бизнес приносит деньги, а если он не приносит, то это не бизнес. Иначе говоря, бизнес модель всегда предполагает наличие кэш флоу если не от клиентов, то от инвесторов.
В случае с любыми некоммерческими проектами, такими как проекты на открытых данных, кэш флоу может не быть. То что указано в Costs может быть как постоянным, частью деятельности чего-то, как COVID-19 Dashboard часть деятельности института Джона Хопкинса, так и может быть и, чаще, является потребностью в поиске финансирования/смены структуры продукта и проекта.
Как бы то ни было этот шаблон канвы вполне пригоден и полезен в работе. Осталось его только красиво оформить, поместить во что-нибудь вроде Miro и похожие инструменты.
Ссылки:
[1] https://dl.acm.org/doi/pdf/10.1145/3511102
#opendata #canvas #businessmodel #research
В статье примеры канвы по COVID-19 Dashboard, в целом отражающей действительности.
Со своей колокольни я вижу то чего в такой канве не хватает - это устойчивости (sustainability). В канве бизнес-модели этого нет потому что предполагается что бизнес приносит деньги, а если он не приносит, то это не бизнес. Иначе говоря, бизнес модель всегда предполагает наличие кэш флоу если не от клиентов, то от инвесторов.
В случае с любыми некоммерческими проектами, такими как проекты на открытых данных, кэш флоу может не быть. То что указано в Costs может быть как постоянным, частью деятельности чего-то, как COVID-19 Dashboard часть деятельности института Джона Хопкинса, так и может быть и, чаще, является потребностью в поиске финансирования/смены структуры продукта и проекта.
Как бы то ни было этот шаблон канвы вполне пригоден и полезен в работе. Осталось его только красиво оформить, поместить во что-нибудь вроде Miro и похожие инструменты.
Ссылки:
[1] https://dl.acm.org/doi/pdf/10.1145/3511102
#opendata #canvas #businessmodel #research
В рубрике интересных наборов данных новость о том что DBLP, открытая база научных публикаций о компьютерных науках, интегрировали их данные с другой открытой научной базой OpenAlex и пишут об этом [1].
Для тех кто не знает, OpenAlex - это открытый продукт базы данных ссылок на научные публикации созданный НКО OutResearch на базе Microsoft Academic Knowledge Graph, большого набор данных опубликованного компанией Microsoft для помощи в развитии инструментов анализа библиографических данных.
DBLP - это проект университета Триера существующий с 1993 года и ведущий крупнейшую в мире систематизированную базу научных публикаций в области компьютерных наук.
Интеграция даёт возможность увидеть категории/концепты к которым относится данная публикация, а ранее уже DBLP интегрировали с базами Semantic Scholar, Crossref и OpenCitations.
Пока это всё происходит на уровне веб-интерфейсов, но, ничто не мешает использовать открытые данные DBLP [2] что автоматизации анализа в нужных областях.
Лично мне в DBLP всегда не хватало возможности подписаться на новые статьи по конкретной теме, исследователю, исследовательскому центру, ключевым словам, но это то что можно делать в других сервисах вроде Semantic Scholar.
Я читаю на регулярной основе ключевые научные работы по цифровой архивации, открытым данным и "пониманию данных" (семантическим типам данных, идентификации шаблонов и тд.). Удобные инструменты для поиска таких публикаций очень помогают.
Ссылки։
[1] https://blog.dblp.org/2022/08/31/openalex-integration-in-dblp/
[2] https://dblp.uni-trier.de/xml/
#opendata #research #openaccess #datasets
Для тех кто не знает, OpenAlex - это открытый продукт базы данных ссылок на научные публикации созданный НКО OutResearch на базе Microsoft Academic Knowledge Graph, большого набор данных опубликованного компанией Microsoft для помощи в развитии инструментов анализа библиографических данных.
DBLP - это проект университета Триера существующий с 1993 года и ведущий крупнейшую в мире систематизированную базу научных публикаций в области компьютерных наук.
Интеграция даёт возможность увидеть категории/концепты к которым относится данная публикация, а ранее уже DBLP интегрировали с базами Semantic Scholar, Crossref и OpenCitations.
Пока это всё происходит на уровне веб-интерфейсов, но, ничто не мешает использовать открытые данные DBLP [2] что автоматизации анализа в нужных областях.
Лично мне в DBLP всегда не хватало возможности подписаться на новые статьи по конкретной теме, исследователю, исследовательскому центру, ключевым словам, но это то что можно делать в других сервисах вроде Semantic Scholar.
Я читаю на регулярной основе ключевые научные работы по цифровой архивации, открытым данным и "пониманию данных" (семантическим типам данных, идентификации шаблонов и тд.). Удобные инструменты для поиска таких публикаций очень помогают.
Ссылки։
[1] https://blog.dblp.org/2022/08/31/openalex-integration-in-dblp/
[2] https://dblp.uni-trier.de/xml/
#opendata #research #openaccess #datasets