Ivan Begtin
7.98K subscribers
1.81K photos
3 videos
101 files
4.52K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts ivan@begtin.tech
Download Telegram
Свежая картинка по продуктам с открытым кодом в области дата инженерии.

Подробнее о ней в блоге её автора на Substack [1].

А я скажу что такие картинки хороши когда надо синхронизировать картинку в голове с изменениями за год, правда, мне лично, вот такой иконостас иконок всегда казался не наглядным и куда практичнее были обзоры по наиболее интересным развивающимся и новым продуктам.

Вот в этой картинке, например, нет SODA для data quality, в платформе метаданных зачем-то CKAN, хотя он про другое.

Я, кстати, несколько по другому систематизирую инструменты с открытым кодом. Когда-то просто стал делать закладки в Github по категориям [2] и там много их, больше 30 списков.

А заодно для тех кто интересуется разного рода экзотическим открытым кодом. Markdowndb [3] наглядная реализация принципов "всё таблица" и "всё SQL". Это фреймворк превращающий документы с разметкой Markdown в SQL базу данных к которой можно делать запросы к содержимому этих файлов с фильтрацией по тэгам, файлам и тд. Внутри используют Sqlite, в гайдах рассказывают как заменить статические файлы на эту базу в статических сайтах.

Ссылки:
[1] https://practicaldataengineering.substack.com/p/open-source-data-engineering-landscape
[2] https://github.com/ivbeg?tab=stars
[3] https://markdowndb.com

#opensource #data #dataengineering #datatools
Я давно не писал про некоторые базовые принципы работы с данными, хотя регулярно о них задумываюсь в практическом контексте применения концепций и принципов инженерии данных к открытым и общедоступным данным. Например, про data lineage, которое на русский язык коллеги переводят как генеалогию данных. Я буду использовать термин data lineage, как более употребимое.

Так вот интересное тут то что в корпоративном мире с густой аналитикой (когда аналитические команды есть и они сильные, и запрос на аналитику есть), так вот в корпоративном мире data lineage - это понятное явление, если не привычное, то активно обсуждаемое и применяемое. Потому что decision maker'ы часто задают вопросы о том как та или иная цифра вышла и надо иметь ответ о том, а как же это оно есть. А вот в мире общедоступных данных, статистики и, отчасти, науки, с data lineage всё, скажем там, плоховато или очень специфично.

В случае научных данных общего типа, происхождение данных, обычно, описано текстом, неструктурировано и, частично, выявляется из ссылок на данные которые использовались. Иногда по этим ссылкам можно определить быстро первоисточник и способы обработки, иногда сложнее. Для хорошо структурированных научных областей вроде биоинформатики это должно быть проще, для других наук сложнее и тд.

В других случаях это сложнее, иногда реально сложно. Ещё сложнее со статистикой, при том что там источники данных указываются практически всегда, но это указание может быть не на первоисточник, а на глобальный источник. Простой пример, какой-нибудь агрегатор данных статистики вроде портала данных ООН (data.un.org) может собирать данные из портала данных Международного валютного фонда (IMF) data.imf.org, а тот из первоисточника, страницы раскрытия данных на сайте резервного банка или статслужбы страны. А кто-то коммерческий может, опять же, собирать данные с портала ООН и выдавать в своём сервисе.
Будем ли он при этом рисовать полноценный data lineage от портала данных ООН до сайта статслужбы ? Вообще-то нет, источником будет указан портал ООН.

С открытыми данными данными ещё хуже, там даже приближения к генеалогии данных нет, даже если в первоисточнике базы из которой создан датасет он есть.

Потому что есть огромное немаловажное явление - это технологический разрыв между порталами раскрытия и системами управления данными.
Он особенно остро ощущается теми кто работает в обоих мирах, с корпоративными данными, и с общедоступными данными.

Лично я его ощущаю довольно сильно и проекты и инициативы которые создаются дата инженерами и, условно, идеологами и активистами отличаются очень сильно.

Первые продвинуты технологически и сразу ориентированы на разработчиков (API, структурированное хранилище, преобразование данных в удобные форматы JSON, Parquet и др.), но, часто, забывая про базовые принципы открытости.

Вторые, наоборот, ориентированы на государственную или корпоративную прозрачность, но технологическая реализация всегда оставляет ощущение архаики.

Как выглядят идеальные порталы/сайты индикаторов или порталы публикации геоданных? Лично я считаю что главное в них это максимальная ориентация на использование дата-инженерами и дата-аналитиками владеющими современными инструментами. Даже, если не суперсовременными, но хотя бы актуальными.

Это реализация data lineage, это проектирование по принципу API First, это современные форматы предоставления данных для data science, это _всегда_ наличие bulk download, это концепция в основе что data as a product, а не данные как производный продукт от чего то ещё.

#opendata #data #dataengineering #thoughts