TerraMind, свежая генеративная модель по данным наблюдения за Землёй от IBM и ESA [1] также доступная на Hugging Face [2] и статья на Arxive.org [3]
Всё под лицензией Apache 2.0, общий объём разных версий модели более 10 ГБ.
Авторы пишут что она превосходит аналогичные foundation models на 8%
Ссылки:
[1] https://research.ibm.com/blog/terramind-esa-earth-observation-model
[2] https://huggingface.co/ibm-esa-geospatial
[3] https://arxiv.org/abs/2504.11171
#geodata #opendata #ibm #ai #aimodels
Всё под лицензией Apache 2.0, общий объём разных версий модели более 10 ГБ.
Авторы пишут что она превосходит аналогичные foundation models на 8%
Ссылки:
[1] https://research.ibm.com/blog/terramind-esa-earth-observation-model
[2] https://huggingface.co/ibm-esa-geospatial
[3] https://arxiv.org/abs/2504.11171
#geodata #opendata #ibm #ai #aimodels
В рубрике полезных ссылок про данные, технологии и не только:
- Как с помощью deep learning мы построили Геокодер, масштабируемый для разных стран [1] статья на хабре от команды Яндекса про геокодирование. Достаточно сложно чтобы не поверхностно, недостаточно сложно чтобы было нечитабельно. Полезно для всех кто анализирует адреса.
- Data Commons: The Missing Infrastructure for Public Interest Artificial Intelligence [2] статья Stefaan Verhulst и группы исследователей про необходимость создания Data Commons, общей инфраструктуры данных и организуемого ими конкурса на эту тему. Интересна и предыдущая статья [3].
- AI is getting “creepy good” at geo-guessing [4] о том насколько облачные AI модели стали пугающе хороши в идентификации мест по фотографии в блоге MalwareBytes
- Redis is now available under the AGPLv3 open source license [5] да, СУБД Redis с 8 версии снова AGPL. Больше открытого кода и свободных лицензий
- Hyperparam Open-Source [6] Hyperparam это инструмент визуализации больших датасетов для машинного обучения. Теперь выпустили с открытым кодом компонент HighTable [7] для отображения больших таблиц. Лицензия MIT
- AI Action Plan Database [8] база данных и более чем 4700 предложений по плану действий в отношении ИИ, инициативе Президента Трампа в США, к которой многие компании прислали свои предложения. Хорошо систематизировано (с помощью ИИ) и доступен CSV датасет.
Ссылки:
[1] https://habr.com/ru/companies/yandex/articles/877086/
[2] https://www.linkedin.com/pulse/data-commons-missing-infrastructure-public-interest-verhulst-phd-k8eec/
[3] https://medium.com/data-policy/data-commons-under-threat-by-or-the-solution-for-a-generative-ai-era-rethinking-9193e35f85e6
[4] https://www.malwarebytes.com/blog/news/2025/04/ai-is-getting-creepy-good-at-geo-guessing
[5] https://redis.io/blog/agplv3/
[6] https://hyperparam.app/about/opensource
[7] https://github.com/hyparam/hightable
[8] https://www.aiactionplan.org/
#opendata #datatools #opensource #datapolicy #ai
- Как с помощью deep learning мы построили Геокодер, масштабируемый для разных стран [1] статья на хабре от команды Яндекса про геокодирование. Достаточно сложно чтобы не поверхностно, недостаточно сложно чтобы было нечитабельно. Полезно для всех кто анализирует адреса.
- Data Commons: The Missing Infrastructure for Public Interest Artificial Intelligence [2] статья Stefaan Verhulst и группы исследователей про необходимость создания Data Commons, общей инфраструктуры данных и организуемого ими конкурса на эту тему. Интересна и предыдущая статья [3].
- AI is getting “creepy good” at geo-guessing [4] о том насколько облачные AI модели стали пугающе хороши в идентификации мест по фотографии в блоге MalwareBytes
- Redis is now available under the AGPLv3 open source license [5] да, СУБД Redis с 8 версии снова AGPL. Больше открытого кода и свободных лицензий
- Hyperparam Open-Source [6] Hyperparam это инструмент визуализации больших датасетов для машинного обучения. Теперь выпустили с открытым кодом компонент HighTable [7] для отображения больших таблиц. Лицензия MIT
- AI Action Plan Database [8] база данных и более чем 4700 предложений по плану действий в отношении ИИ, инициативе Президента Трампа в США, к которой многие компании прислали свои предложения. Хорошо систематизировано (с помощью ИИ) и доступен CSV датасет.
Ссылки:
[1] https://habr.com/ru/companies/yandex/articles/877086/
[2] https://www.linkedin.com/pulse/data-commons-missing-infrastructure-public-interest-verhulst-phd-k8eec/
[3] https://medium.com/data-policy/data-commons-under-threat-by-or-the-solution-for-a-generative-ai-era-rethinking-9193e35f85e6
[4] https://www.malwarebytes.com/blog/news/2025/04/ai-is-getting-creepy-good-at-geo-guessing
[5] https://redis.io/blog/agplv3/
[6] https://hyperparam.app/about/opensource
[7] https://github.com/hyparam/hightable
[8] https://www.aiactionplan.org/
#opendata #datatools #opensource #datapolicy #ai
Хабр
Как с помощью deep learning мы построили Геокодер, масштабируемый для разных стран
Давным‑давно, когда мир ML состоял из бустингов, линейных моделей и статистических подходов, перед нашей командой API Яндекс Карт стояла задача сделать качественный Геокодер. Это алгоритм,...