А у нас кстати в Ванкувере ходят туры на Аляску🛥 , не бывали еще на Аляске? Хорошее направление, может кто порекомендует?
Please open Telegram to view this post
VIEW IN TELEGRAM
🐳24🌚14❤🔥7⚡7😈2🍌1
Сегодня я поймал себя на мысли, что через неделю начинается новый проект в новом стартапе, с кем я общался где-то месяц назад, но я не могу вспомнить их название.
Что это - Опыт? Старость? Пофигизм?🦯 Наверно просто каникулы и work life balance, а не эти вот ваши 996🗽
Что это - Опыт? Старость? Пофигизм?
Please open Telegram to view this post
VIEW IN TELEGRAM
❤🔥42🙈5🫡3😈1
Media is too big
VIEW IN TELEGRAM
Записал видео для вас в августе 2024, но что-то не опубликовал, зато в августе 2025 можно вернуться в прошлое:)
❤🔥24💯15🐳6🫡3⚡1🌚1🙊1
В статье The Inconvenient Truths of Self-Service Analytics автор (Seattle DataGuy), рассуждает про Self-Service. Тот самый, которые еще появился во времена взрывного роста Tableau, Power BI и других вендоров, которые обещали самостоятельную аналитику для бизнес пользователей или как обычно бывают лили в уши клиентам, про их замечательные продукты, упуская из вида действительно важные составляющие такой аналитики.
Основные тезисы статьи:
Сформулируйте бизнес‑вопрос до создания
Не начинайте с данных и дашбордов. Сначала определите, для каких решений нужна аналитика. Без конкретной цели создаются многочисленные отчёты, которые никто не использует
Создайте управляемые и качественные потоки данных
Даже самый красивый дашборд бесполезен, если данные нельзя доверять. Необходимо обеспечить стандартизацию метрик, чёткие определения и автоматический контроль качества данных
Дизайн решений под конкретные роли
Разные роли (руководители, операционные команды) нуждаются в разных форматах аналитических данных. Универсальные дашборды часто не эффективны — нужен индивидуальный подход
Внедрение и обучение — это обязательная часть решения
Даже самый продуманный инструмент аналитики требует обучения пользователей и комфортного процесса внедрения. Без этого дашборды останутся невостребованными
Контекст отрасли важнее общего инструментария
Общие бизнес‑метрики могут не отражать конкретных реалий вашего бизнеса. Отраслевой контекст, особенности и знание процесса намного важнее красивых визуализаций
Иногда стоит привлечь внешних экспертов
Консультанты могут ускорить создание аналитической платформы — они обладают опытом и шаблонами, которые можно адаптировать под ваш бизнес, а затем передать команде
Переосмыслить "self‑service" — сделать это "action‑service"
Дашборд — лишь средство, а не цель. Настоящая ценность аналитики в том, чтобы она приводила к действиям: рекомендовать следующий шаг, автоматически реагировать на тренды и т.п.
То есть получается, что ни один вендор вам не сделает правильную self-аналитику. Это больше про настройку процессов, мониторинг качества данных, адаптацию пользователей через обучение и онбординг, принятие правильных и эффективных бизнес решений.
Вообще вендоры они такие, им бы лишь бы впарить свой продукт, и их маркетинговый отдел, который, как правило не сильно понимает разницу между BI и DW, готов на все, лишь бы привлечь ваше внимание💰 А иногда бывают, что и руководители в погоне за модными вендорами, готовы устроить очередную миграцию или внедрение shiny tech, лишь бы не заниматься действительно важной и полезной работой.
Основные тезисы статьи:
Сформулируйте бизнес‑вопрос до создания
Не начинайте с данных и дашбордов. Сначала определите, для каких решений нужна аналитика. Без конкретной цели создаются многочисленные отчёты, которые никто не использует
Создайте управляемые и качественные потоки данных
Даже самый красивый дашборд бесполезен, если данные нельзя доверять. Необходимо обеспечить стандартизацию метрик, чёткие определения и автоматический контроль качества данных
Дизайн решений под конкретные роли
Разные роли (руководители, операционные команды) нуждаются в разных форматах аналитических данных. Универсальные дашборды часто не эффективны — нужен индивидуальный подход
Внедрение и обучение — это обязательная часть решения
Даже самый продуманный инструмент аналитики требует обучения пользователей и комфортного процесса внедрения. Без этого дашборды останутся невостребованными
Контекст отрасли важнее общего инструментария
Общие бизнес‑метрики могут не отражать конкретных реалий вашего бизнеса. Отраслевой контекст, особенности и знание процесса намного важнее красивых визуализаций
Иногда стоит привлечь внешних экспертов
Консультанты могут ускорить создание аналитической платформы — они обладают опытом и шаблонами, которые можно адаптировать под ваш бизнес, а затем передать команде
Переосмыслить "self‑service" — сделать это "action‑service"
Дашборд — лишь средство, а не цель. Настоящая ценность аналитики в том, чтобы она приводила к действиям: рекомендовать следующий шаг, автоматически реагировать на тренды и т.п.
То есть получается, что ни один вендор вам не сделает правильную self-аналитику. Это больше про настройку процессов, мониторинг качества данных, адаптацию пользователей через обучение и онбординг, принятие правильных и эффективных бизнес решений.
Вообще вендоры они такие, им бы лишь бы впарить свой продукт, и их маркетинговый отдел, который, как правило не сильно понимает разницу между BI и DW, готов на все, лишь бы привлечь ваше внимание💰 А иногда бывают, что и руководители в погоне за модными вендорами, готовы устроить очередную миграцию или внедрение shiny tech, лишь бы не заниматься действительно важной и полезной работой.
Substack
The Inconvenient Truths of Self-Service Analytics
What every data leader needs to know before chasing self-service
3💯20❤🔥8🐳6⚡1
На этой неделе буду в Денвере, Колорадо, а в выходные в Сиэтле. Можно как обычно на data&drinks🗽
Please open Telegram to view this post
VIEW IN TELEGRAM
❤🔥13⚡5💯4😭1
This media is not supported in your browser
VIEW IN TELEGRAM
1❤🔥47🐳15💯6⚡2
Forwarded from topdatalab (Roman Zykov)
Data Engineer в мою команду в Лондоне!
Начал искать инженера данных в свою команду в Лондоне.
Уровень ближе к Senior. Предпочтительно в Лондоне.
У нас нестандартый open-source стeк: https://t.me/topdatalab/426
Ссылка на вакансию: https://newfts.bamboohr.com/careers/180?source=aWQ9MTE%3D
Начал искать инженера данных в свою команду в Лондоне.
Уровень ближе к Senior. Предпочтительно в Лондоне.
У нас нестандартый open-source стeк: https://t.me/topdatalab/426
Ссылка на вакансию: https://newfts.bamboohr.com/careers/180?source=aWQ9MTE%3D
Telegram
topdatalab
Выложили видео с моего вебинара про SQLMesh и dltHub.
Кроме рассказа, я показывал все на примерах, как на лабораторных работах.
Думаю его полезно послушать тем, кто хочет использовать самые современные инструменты open-source data engineering.
При этом организовать…
Кроме рассказа, я показывал все на примерах, как на лабораторных работах.
Думаю его полезно послушать тем, кто хочет использовать самые современные инструменты open-source data engineering.
При этом организовать…
❤🔥18🌚8🙈3
Все выступления конференции MCP Dev Days (29–30 июля 2025 г.) теперь доступны онлайн в свободном доступе.
👉 Полный плейлист MCP Dev Days на YouTube
День 1 — DevTools и Сообщество
- Ключевая сессия: «Строим будущее AI-разработки вместе» — спикеры Jay Parikh (EVP Core AI, Microsoft), James Montemagno, Linda Li, Drew Hodun, Burke Holland и Donald Thompson.
- MCP Power-User Mode: обзор всех возможностей MCP в VS Code (демо от Liam Hampton).
- Discoverability Unlocked: публикация и поиск MCP-серверов в Community Registry (Toby Padilla, Tadas Antanavicius).
- Chat with the Web: проект NLWeb о диалоговом взаимодействии с интернетом (Ramanathan Guha, Jennifer Marsman, Chelsea Carter, James …).
День 2 — Построение серверов и безопасность
- Использование MCP в продакшене
- MCP с AI-агентами
- Безопасность и практики защиты
- Инструменты поддержки экосистемы
В канале уже много раз обсуждался MCP, один из новых трендов в AI, который важно знать и понимать для инженеров и руководителей. Я пока только использую MCP для подключения к базе данных (Snowflake), чтобы было легче в Cursor получать контекст для генерации кода (Terraform, dbt SQL/YML, Python).
В Surfalytics у нас появился специальный канал dev-boost-with-ai, в которым мы делимся подходами к работе с AI и материалами. Пользователи разделились на Cursor и Claude Code.
👉 Полный плейлист MCP Dev Days на YouTube
День 1 — DevTools и Сообщество
- Ключевая сессия: «Строим будущее AI-разработки вместе» — спикеры Jay Parikh (EVP Core AI, Microsoft), James Montemagno, Linda Li, Drew Hodun, Burke Holland и Donald Thompson.
- MCP Power-User Mode: обзор всех возможностей MCP в VS Code (демо от Liam Hampton).
- Discoverability Unlocked: публикация и поиск MCP-серверов в Community Registry (Toby Padilla, Tadas Antanavicius).
- Chat with the Web: проект NLWeb о диалоговом взаимодействии с интернетом (Ramanathan Guha, Jennifer Marsman, Chelsea Carter, James …).
День 2 — Построение серверов и безопасность
- Использование MCP в продакшене
- MCP с AI-агентами
- Безопасность и практики защиты
- Инструменты поддержки экосистемы
В канале уже много раз обсуждался MCP, один из новых трендов в AI, который важно знать и понимать для инженеров и руководителей. Я пока только использую MCP для подключения к базе данных (Snowflake), чтобы было легче в Cursor получать контекст для генерации кода (Terraform, dbt SQL/YML, Python).
В Surfalytics у нас появился специальный канал dev-boost-with-ai, в которым мы делимся подходами к работе с AI и материалами. Пользователи разделились на Cursor и Claude Code.
YouTube
MCP Dev Days
Join us for MCP Dev Days, a two-day virtual event exploring the growing ecosystem around the Model Context Protocol (MCP), a standard that bridges AI models ...
⚡7❤🔥6💯1
Навык объяснять, почему модель предсказывает именно так, сегодня ценится не меньше, чем умение её обучить.
Нашли занятный материал на Хабе о том, как визуализация с помощью SHAP (от summary_plot до PDP и ICE) помогает не просто анализировать, а понимать, какие фичи реально влияют на отток клиентов. Эксперт ВТБ Андрей Бояренков делится эффективными приёмами: от выбора признаков до цветовой кодировки и примеров кода.
Это тот случай, когда объяснимый ML = сильное резюме и больше доверия к вашей модели.
👉 Читайте разбор с примерами и лайфхаками: https://habr.com/ru/companies/vtb/articles/938988/
Нашли занятный материал на Хабе о том, как визуализация с помощью SHAP (от summary_plot до PDP и ICE) помогает не просто анализировать, а понимать, какие фичи реально влияют на отток клиентов. Эксперт ВТБ Андрей Бояренков делится эффективными приёмами: от выбора признаков до цветовой кодировки и примеров кода.
Это тот случай, когда объяснимый ML = сильное резюме и больше доверия к вашей модели.
👉 Читайте разбор с примерами и лайфхаками: https://habr.com/ru/companies/vtb/articles/938988/
Хабр
Shap-графики: как наглядно объяснить заказчику логику работы модели
Всем привет. Я Андрей Бояренков, лидер кластера бизнес-моделей стрима "Разработка моделей КИБ и СМБ" банка ВТБ. Наш кластер отвечает за: выстраивание и внедрение процессов AutoML, за разработку...
💯14🦄5🙊5
Forwarded from Грокс
Американские рынки падают и Financial Times заявляет, что Уолл-стрит напугал отчёт из именитого MIT. Согласно ему, на внедрение искусственного интеллекта бизнес в США потратил около 40 миллиардов долларов, однако лишь 5% компаний смогли интегрировать ИИ в свои производственные процессы и зафиксировать увеличение прибыльности. 95% организаций не получают никакой отдачи («are getting zero return»). Галя, у нас отмена!
https://www.ft.com/content/33914f25-093c-4069-bb16-8626cfc15a51
https://www.ft.com/content/33914f25-093c-4069-bb16-8626cfc15a51
Forwarded from TechSparks
Помните классику?
Вот буквально это проделали журналисты и эксперты с недавним отчетом MIT о «полном провале ИИ-инициатив в корпорациях». Велик шанс, что вам на днях попадались заголовки про «всего 5% ИИ-инициатив успешны» и «ИИ провален в 95% случаев». Внимательно прочитать 26 страниц текста с картинками, похоже, мало кто смог.
Поэтому порадовала редкая статья, где автор с некоторым недоумением замечает, что отчет-то совсем о другом — если его прочитать. Он о том, что сотрудники массово и добровольно используют публично доступный ИИ в своей повседневной работе (и не пользуются корпоративными решениями в силу их очевидно более низкого качества).
a closer reading tells a starkly different story — one of unprecedented grassroots technology adoption that has quietly revolutionized work while corporate initiatives stumble. Это не проблемы ИИ, а полная некомпетентность руководителей, поэтому — уникальный случай! — происходит «революция снизу»: researchers found that 90% of employees regularly use personal AI tools for work. И вот про эти 90% не написал никто. Поразительно, но сформировалась «теневая экономика ИИ», не попадающая в корпоративные отчеты: Far from showing AI failure, the shadow economy reveals massive productivity gains that don’t appear in corporate metrics.
Почитайте материал по ссылке, если уж не сам отчет, там много интересных примеров:)
https://venturebeat.com/ai/mit-report-misunderstood-shadow-ai-economy-booms-while-headlines-cry-failure/
Ученый на интервью: «Все мои суждения бессмысленны, если они вырваны из контекста». Заголовок в газете на следующий день: «Знаменитый ученый признался, что все его суждения бессмысленны!»
Вот буквально это проделали журналисты и эксперты с недавним отчетом MIT о «полном провале ИИ-инициатив в корпорациях». Велик шанс, что вам на днях попадались заголовки про «всего 5% ИИ-инициатив успешны» и «ИИ провален в 95% случаев». Внимательно прочитать 26 страниц текста с картинками, похоже, мало кто смог.
Поэтому порадовала редкая статья, где автор с некоторым недоумением замечает, что отчет-то совсем о другом — если его прочитать. Он о том, что сотрудники массово и добровольно используют публично доступный ИИ в своей повседневной работе (и не пользуются корпоративными решениями в силу их очевидно более низкого качества).
a closer reading tells a starkly different story — one of unprecedented grassroots technology adoption that has quietly revolutionized work while corporate initiatives stumble. Это не проблемы ИИ, а полная некомпетентность руководителей, поэтому — уникальный случай! — происходит «революция снизу»: researchers found that 90% of employees regularly use personal AI tools for work. И вот про эти 90% не написал никто. Поразительно, но сформировалась «теневая экономика ИИ», не попадающая в корпоративные отчеты: Far from showing AI failure, the shadow economy reveals massive productivity gains that don’t appear in corporate metrics.
Почитайте материал по ссылке, если уж не сам отчет, там много интересных примеров:)
https://venturebeat.com/ai/mit-report-misunderstood-shadow-ai-economy-booms-while-headlines-cry-failure/
❤🔥23🦄12 5👨💻2⚡1💯1
Forwarded from Быть Лидом 😎
Так уж исторически сложилось, что я собеседую всех кандидатов на руководящие позиции в свой ИТ-департамент в Ситидрайв. Это небольшая встреча-знакомство на 30–40 минут, на которой я составляю второе мнение о кандидате и передаю его нанимающему менеджеру для оценки рисков. Сейчас у нас открыто несколько таких позиций, поэтому за последние несколько недель у меня было достаточно встреч, чтобы заметить одну тенденцию у некоторых кандидатов.
В этом потоке мне отчётливо запомнились два кандидата. Опыт лидерства у них только на последнем месте работы, и лидами они там стали не за выдающиеся управленческие навыки и не за умение организовывать работу, развивать людей, собирать команду и отвечать за результат, а за то, что были самыми опытными разработчиками в команде и лучше всех понимали, как устроен проект. Так, после ухода лида их кто-то назначил лидом вместо ушедшего.
И вот третий такой кандидат и побудил меня написать эту заметку. Он — крепкий технарь, но точно не руководитель. И я ему задаю вопрос: «Слушай, а если вместо руководящей позиции мы тебе предложим инженерную, ты согласишься?». Тут он сразу приободрился, одобрительно начал кивать головой и подчеркнул: «Это будет даже лучше!». Я ему начал объяснять, что в этом случае мы будем оценивать его как инженера, и есть немаленькая вероятность, что именно столько, сколько он хочет, мы предложить не сможем, и спросил – готов ли он двигаться по своим ожиданиям. Тут я получил категоричный отказ, мол, он уже привык к такому уровню заработка и меньше получать никак не хочет.
Что говорить, и в моей практике был аналогичный случай, когда я пришёл в небольшую команду, где был супер-гуру-разработчик, который знал проект до последнего винтика, спасал сервис при инцидентах и писал сложный код. Людей стало чуть больше, и я назначил его лидом небольшой команды. Но вместо того, чтобы развивать команду и фокусировать её на достижении результата, он продолжал тушить пожары и писал код за троих. Год я вкладывался в него и растил из него лида, но, кажется, скорее потерял хорошего разработчика и получил плохого руководителя 😢
И таких историй масса, и они случаются на разных уровнях. И чем выше — тем страшнее. В другой компании руководителем разработки сделали бывшего разработчика, который дольше всех работал в компании. И вот его пять команд в 30 человек жили своей жизнью, а он жил своей — писал сложные алгоритмы и решал инциденты в сервисах, о которых знал только он 🫠
Получается, что хороший подчинённый далеко не всегда становится хорошим руководителем. Новая должность, а особенно переход на руководящую должность с линейной — это другой майндсет, другие задачи и обязанности, которым нужно учиться с нуля.
Это как хороший продажник редко становится хорошим директором по продажам — ведь директор по продажам должен уметь нанимать хороших продажников, а не сам продавать лучше всех. И вот мы повышаем успешных сотрудников за прошлые заслуги, даём им должность выше, где нужны уже совсем другие навыки, и тем самым делаем их некомпетентными 😢 И через какое-то время можно наблюдать, как в компании ключевые руководящие посты оказываются заняты людьми, которые топчутся на месте и продолжают делать то, что делали раньше, хотя от них уже ждут другого.
Я в своих наблюдениях не одинок — всё, о чём я тут пишу, было подмечено канадским исследователем Лоуренсом Дж. Питером ещё в 1969 году в книге «The Peter Principle: Why Things Always Go Wrong».
И вот Принцип Питера гласит: «В иерархических организациях сотрудники имеют тенденцию подниматься по служебной лестнице до уровня своей некомпетентности. В итоге каждый стремится занять должность, которую он не способен выполнять».
Что делать, шеф?
❗️Перестать делать то же самое, что ты делал до этого, и рассчитывать на то, что этого достаточно или что это именно то, что от тебя ожидают. Воспринимай новую должность как новую профессию и начинай учиться.
И если ты понимаешь, что это не твоё — не страшно сделать шаг назад, чтобы потом сделать два шага вперёд 😎
В этом потоке мне отчётливо запомнились два кандидата. Опыт лидерства у них только на последнем месте работы, и лидами они там стали не за выдающиеся управленческие навыки и не за умение организовывать работу, развивать людей, собирать команду и отвечать за результат, а за то, что были самыми опытными разработчиками в команде и лучше всех понимали, как устроен проект. Так, после ухода лида их кто-то назначил лидом вместо ушедшего.
И вот третий такой кандидат и побудил меня написать эту заметку. Он — крепкий технарь, но точно не руководитель. И я ему задаю вопрос: «Слушай, а если вместо руководящей позиции мы тебе предложим инженерную, ты согласишься?». Тут он сразу приободрился, одобрительно начал кивать головой и подчеркнул: «Это будет даже лучше!». Я ему начал объяснять, что в этом случае мы будем оценивать его как инженера, и есть немаленькая вероятность, что именно столько, сколько он хочет, мы предложить не сможем, и спросил – готов ли он двигаться по своим ожиданиям. Тут я получил категоричный отказ, мол, он уже привык к такому уровню заработка и меньше получать никак не хочет.
Что говорить, и в моей практике был аналогичный случай, когда я пришёл в небольшую команду, где был супер-гуру-разработчик, который знал проект до последнего винтика, спасал сервис при инцидентах и писал сложный код. Людей стало чуть больше, и я назначил его лидом небольшой команды. Но вместо того, чтобы развивать команду и фокусировать её на достижении результата, он продолжал тушить пожары и писал код за троих. Год я вкладывался в него и растил из него лида, но, кажется, скорее потерял хорошего разработчика и получил плохого руководителя 😢
И таких историй масса, и они случаются на разных уровнях. И чем выше — тем страшнее. В другой компании руководителем разработки сделали бывшего разработчика, который дольше всех работал в компании. И вот его пять команд в 30 человек жили своей жизнью, а он жил своей — писал сложные алгоритмы и решал инциденты в сервисах, о которых знал только он 🫠
Получается, что хороший подчинённый далеко не всегда становится хорошим руководителем. Новая должность, а особенно переход на руководящую должность с линейной — это другой майндсет, другие задачи и обязанности, которым нужно учиться с нуля.
Это как хороший продажник редко становится хорошим директором по продажам — ведь директор по продажам должен уметь нанимать хороших продажников, а не сам продавать лучше всех. И вот мы повышаем успешных сотрудников за прошлые заслуги, даём им должность выше, где нужны уже совсем другие навыки, и тем самым делаем их некомпетентными 😢 И через какое-то время можно наблюдать, как в компании ключевые руководящие посты оказываются заняты людьми, которые топчутся на месте и продолжают делать то, что делали раньше, хотя от них уже ждут другого.
Я в своих наблюдениях не одинок — всё, о чём я тут пишу, было подмечено канадским исследователем Лоуренсом Дж. Питером ещё в 1969 году в книге «The Peter Principle: Why Things Always Go Wrong».
И вот Принцип Питера гласит: «В иерархических организациях сотрудники имеют тенденцию подниматься по служебной лестнице до уровня своей некомпетентности. В итоге каждый стремится занять должность, которую он не способен выполнять».
Что делать, шеф?
❗️Перестать делать то же самое, что ты делал до этого, и рассчитывать на то, что этого достаточно или что это именно то, что от тебя ожидают. Воспринимай новую должность как новую профессию и начинай учиться.
И если ты понимаешь, что это не твоё — не страшно сделать шаг назад, чтобы потом сделать два шага вперёд 😎
101💯98❤🔥22🌚6⚡3🍌1🫡1
В посте, товарищ рассказал, как они круто выкинули Табло Север и стали использовать Slack бота + GenAI, чтобы отвечать на вопросы пользователей. Само собой разумеется, что они пофиксили семантический слой, определили метрики, позаботились о качестве данных.
Как результат пользователи пишут вопрос в Slack, и LLM возвращает им ответ. Такая функциональность доступна уже из коробки в Snowflake (Semantic Layer). Вам просто нужно описать вашу модель данных в YML, и все.
Навести порядок в данных это обычно самое сложное. Часто не выполнимая задача, потому что разработчики ленивые, и часто у них нет достаточно мотивации держать стерильную чистоту в хранилище/озере данных. А GenAI не понимают бизнес контекста и аббревиатуры и naming conventions.
В целом тренд очевидный, сам BI можно уже отдавать на outsource GenAI приложению.
Ребята из команды VILKY (кстати дашборд на Tableau Public) недавно показали отличный пример, как они задали вопрос и LLM написала SQL и провела небольшой анализ. То есть концепт работает, если данные хорошо организованы под такую задачу.
Но тут возникает интересный вопрос. Сейчас я приведу пример, который немного добавит контекста.
В моей любимой книге Angel: How to Invest in Technology Startups, автор упоминает инвестицию в проект Cafe X — "кафе, где кофе варят роботы, конкурирующее со Starbucks, и создающее возможность продавать кофе дешевле за счёт автоматизации”.
Главная идея, ваше кофе должно стоить не 5-6$ (сейчас оно так стоит), а на 50% дешевле.
Вот буквально на днях в Сиэтле мне попалась кафе с кофе, где его делают роботы. Больше похоже на самоделкиных.
Делают сносно, но цена при этом такая же как и в обычном кафе, где работает бариста.
То есть, уже экономика этого заведения странновато, вместе конвейера отличного капучино, у нас музей роботов.
Но самое важное проблема в этом, пока еще сам человек, которому комфортней сходить к человеку баристе, потому что он всегда так делал.
То есть во многих случаях, человек хочет общаться с человеком, а не с бездушной машиной. Компания Klarna уже обожглась.
Так же и с BI, с одной стороны, мы можешь сделать insights on demand, через LLM, а с другой стороны, я еще не знаю ни одной компании, которая не использует хоть какой-то BI инструмент, потому что пользователям так комфортно, и пока большинство не хочет менять привычки. Уверен, скоро кто-нибудь большой выпендрится, какие они молодцы - BI-AI first, раньше всех.
Но все движется к тому, что большие BI вендоры находятся в конкуренции с LLM и даже, если они добавят новые фичи, это им не поможет.
А как вы думает про кейс BI+LLM или LLM вместо BI в средней перспективе?
Мне видится, что для executive dashboards будет классический BI, а вот для self-services и deep dives скоро будут больше полагаться на GenAI. Опят же не заменяя человека, а дополняя, где человеку нужно будет валидировать гипотезы и инсайты.
Представляете, приходите на работу и после ночного ETL 20 новых гипотез и инсайтов, нужно выбрать только 1-2 из них.
Кто-то скажет, что и человек не нужен будет…вот и узнаем скоро:)
Как результат пользователи пишут вопрос в Slack, и LLM возвращает им ответ. Такая функциональность доступна уже из коробки в Snowflake (Semantic Layer). Вам просто нужно описать вашу модель данных в YML, и все.
Навести порядок в данных это обычно самое сложное. Часто не выполнимая задача, потому что разработчики ленивые, и часто у них нет достаточно мотивации держать стерильную чистоту в хранилище/озере данных. А GenAI не понимают бизнес контекста и аббревиатуры и naming conventions.
В целом тренд очевидный, сам BI можно уже отдавать на outsource GenAI приложению.
Ребята из команды VILKY (кстати дашборд на Tableau Public) недавно показали отличный пример, как они задали вопрос и LLM написала SQL и провела небольшой анализ. То есть концепт работает, если данные хорошо организованы под такую задачу.
Но тут возникает интересный вопрос. Сейчас я приведу пример, который немного добавит контекста.
В моей любимой книге Angel: How to Invest in Technology Startups, автор упоминает инвестицию в проект Cafe X — "кафе, где кофе варят роботы, конкурирующее со Starbucks, и создающее возможность продавать кофе дешевле за счёт автоматизации”.
Главная идея, ваше кофе должно стоить не 5-6$ (сейчас оно так стоит), а на 50% дешевле.
Вот буквально на днях в Сиэтле мне попалась кафе с кофе, где его делают роботы. Больше похоже на самоделкиных.
Делают сносно, но цена при этом такая же как и в обычном кафе, где работает бариста.
То есть, уже экономика этого заведения странновато, вместе конвейера отличного капучино, у нас музей роботов.
Но самое важное проблема в этом, пока еще сам человек, которому комфортней сходить к человеку баристе, потому что он всегда так делал.
То есть во многих случаях, человек хочет общаться с человеком, а не с бездушной машиной. Компания Klarna уже обожглась.
Так же и с BI, с одной стороны, мы можешь сделать insights on demand, через LLM, а с другой стороны, я еще не знаю ни одной компании, которая не использует хоть какой-то BI инструмент, потому что пользователям так комфортно, и пока большинство не хочет менять привычки. Уверен, скоро кто-нибудь большой выпендрится, какие они молодцы - BI-AI first, раньше всех.
Но все движется к тому, что большие BI вендоры находятся в конкуренции с LLM и даже, если они добавят новые фичи, это им не поможет.
А как вы думает про кейс BI+LLM или LLM вместо BI в средней перспективе?
Мне видится, что для executive dashboards будет классический BI, а вот для self-services и deep dives скоро будут больше полагаться на GenAI. Опят же не заменяя человека, а дополняя, где человеку нужно будет валидировать гипотезы и инсайты.
Представляете, приходите на работу и после ночного ETL 20 новых гипотез и инсайтов, нужно выбрать только 1-2 из них.
Кто-то скажет, что и человек не нужен будет…вот и узнаем скоро:)
⚡24❤🔥13💯7🙈2
В западных компаниях есть термин - Mutual Separation Agreement, то есть обоюдное разделение.
Вот работаете вы в компании и понимаете, вроде все ок, но что-то не то.
Что делать?
Любители обычно начинают искать работу или того хуже, сразу увольняются, отработав последние 2 недели.
А как делают профессионалы? Узнают, есть ли у них в компании MSA, пишут письмо боссу и HR, что так и так, вроде все хорошо, но немного не по пути, давайте договоримся по хорошему - мне 2-6 зарплат, а у вас будет отличная возможность найти хорошего человека.
Такое может получится, если вы работает в компании 1,5-2 года как минимум. Очевидно, если меньше года, ловить нечего, лучше тогда по PIP разойтись:)
Вы знали про такой подход MSA?
Вот работаете вы в компании и понимаете, вроде все ок, но что-то не то.
Что делать?
Любители обычно начинают искать работу или того хуже, сразу увольняются, отработав последние 2 недели.
А как делают профессионалы? Узнают, есть ли у них в компании MSA, пишут письмо боссу и HR, что так и так, вроде все хорошо, но немного не по пути, давайте договоримся по хорошему - мне 2-6 зарплат, а у вас будет отличная возможность найти хорошего человека.
Такое может получится, если вы работает в компании 1,5-2 года как минимум. Очевидно, если меньше года, ловить нечего, лучше тогда по PIP разойтись:)
Вы знали про такой подход MSA?
1🤷29❤🔥11🐳4⚡2
Наконец-то кто-то сделал хорошую аналитику по дорогим ресторанам в NY и SF. Как мы раньше жили=)
Самое прикольное, что RAMP это корпоративная карта, и дорогие рестораны это всего-лишь business expenses.
Помню времена, когда в Москве в компаниях SAP, Oracle, IBM выдавали машины консультантам и сейлзам. Вот например, в 2011 году можно было получить Audi A3 в SAP, я даже прошел все собеседования на Sales Engineer по BI, но как всегда денег хотелось боооольше))
По секрету: я вообще-то эксперт по business expenses - Microsoft, Amazon и другие большие компании + своя corporation. Поэтому мой следующий тренинг будет называться - Ace the Business Expenses, которой можно будет купить дорого и списать как business expense!
Кстати Surfalytics и mentorship народ тоже списывает официально как learning expenses.
Самое прикольное, что RAMP это корпоративная карта, и дорогие рестораны это всего-лишь business expenses.
Помню времена, когда в Москве в компаниях SAP, Oracle, IBM выдавали машины консультантам и сейлзам. Вот например, в 2011 году можно было получить Audi A3 в SAP, я даже прошел все собеседования на Sales Engineer по BI, но как всегда денег хотелось боооольше))
По секрету: я вообще-то эксперт по business expenses - Microsoft, Amazon и другие большие компании + своя corporation. Поэтому мой следующий тренинг будет называться - Ace the Business Expenses, которой можно будет купить дорого и списать как business expense!
Кстати Surfalytics и mentorship народ тоже списывает официально как learning expenses.
❤🔥25🌚6
Forwarded from LEFT JOIN
Как становиться руководителем — гайд 101
На основе личного опыта.
0️⃣ Change your mind
Нулевой пункт — самый важный, потому что требует нескольких вещей:
🔵 Разобраться, зачем вам это нужно? Ну реально, станет ли лучше, если вы начнете кем-то руководить? Даже зарплата может стать ниже на какой-то период.
🔵 Понять, что жизнь изменится и интересные задачки в духе написать клевый SQL-код, придумать алгоритм, запилить датавиз, сократятся до минимума.
🔵 Перестроиться, что дальше вы будете думать о людях, команде, мотивации.
1️⃣ Вооружиться полезным контентом
Мне помогали в свое время книги:
🔵 Питер Друкер, «Эффективный руководитель»
🔵 Стивен Кови, «7 навыков высокоэффективных людей»
🔵 Кеннеди Гэвин, «Договориться можно обо всем»,
🔵 Эдвардс Деминг, «Выход из кризиса».
Скорее всего, сейчас инфы больше — найдутся полезные ролики на Youtube, шортсы, рилсы, телеграм-контент и так далее.
Почему важно погрузиться в контент?
Вы начинаете менять парадигму мышления, и появятся темы, о которых вы никогда раньше не думали. Вам предстоит расширить границы осознаваемого, найти для себя новые мысли и идеи, и книги хорошо решают эту задачу. Контент тоже.
2️⃣ Найти пример для подражания
Когда-то давно у меня был в Ленте классный руководитель по маркетингу. Привет тебе, Леша, если вдруг читаешь. Меня поражало с какой точностью он ставит задачи, описывает ожидаемые решения, уточняет дедлайны и спрашивает о результатах. Я хотел быть на старте, как Леша, поэтому я копировал его стиль постановки задач, их описания, структурирования.
Позже я, конечно же, понял, что я никакой не Леша, а Коля, и стиль у меня будет собственный, но с чего-то же надо начинать?
3️⃣ Поискать ментора
Вдруг удастся найти кого-то, кто уже проходил этот путь (ну вот я, например, проходил), и он сможет поделиться советами как наставник? У вас точно будут неожиданные вызовы, и нужно будет думать, как решать задачу. К примеру, руководитель часто решает вопросы, связанные с наймом и увольнением, а это довольно непростые вещи, так как предполагают общение с людьми, причем зачастую — довольно конфликтное.
4️⃣ Начать действовать
У меня было так: я серчил вакансии руководителя и каждый раз обнаруживал, что все ищут руководителя с опытом работы 1-3 года. Я, напомню, был аналитиком данных. Меня всегда это интересовало, откуда может у меня появится опыт руководителя, если все ищут руководителя с опытом? Стало понятно, что опыт нужно создать.
Тогда я пошел к своему боссу в Yota и сказал, что у меня есть силы и ресурс обучить аналитике несколько чуваков из колл-центра, если у них будет норм бэкграунд. В Yota это называлось «ротационные». Собственно, это я и делал, отобрал их по резюме, и начал давать контент + задачи по теме, которые помогали разгрузить меня и создавали пользу для моего подразделения в Yota.
Так у меня появился первый опыт управления персоналом, и мне стали чуть лучше понятны концепции, которые описывали в книгах. Я даже начал экспериментировать и применять их на практике, например, разные способы мотивации.
5️⃣ Осознать изменения
Важно понять, что если вы были суперкрутой аналитик, дата сатанист или даже кэггл-грандмастер, на старте вы нулевой руководитель и вам по новой надо набираться опыта, проходить кривую опыта, быть готовым к тому, что вы теперь не звезда, а учитесь управлять людьми, а это очень сложно.
6️⃣ Становиться лучшим боссом
Обучаться дальше, расти, получать обратную связь от подчиненных, находить новые возможности получения результатов, сплачивать команду и кайфовать.
На основе личного опыта.
Нулевой пункт — самый важный, потому что требует нескольких вещей:
Мне помогали в свое время книги:
Скорее всего, сейчас инфы больше — найдутся полезные ролики на Youtube, шортсы, рилсы, телеграм-контент и так далее.
Почему важно погрузиться в контент?
Вы начинаете менять парадигму мышления, и появятся темы, о которых вы никогда раньше не думали. Вам предстоит расширить границы осознаваемого, найти для себя новые мысли и идеи, и книги хорошо решают эту задачу. Контент тоже.
Когда-то давно у меня был в Ленте классный руководитель по маркетингу. Привет тебе, Леша, если вдруг читаешь. Меня поражало с какой точностью он ставит задачи, описывает ожидаемые решения, уточняет дедлайны и спрашивает о результатах. Я хотел быть на старте, как Леша, поэтому я копировал его стиль постановки задач, их описания, структурирования.
Позже я, конечно же, понял, что я никакой не Леша, а Коля, и стиль у меня будет собственный, но с чего-то же надо начинать?
Вдруг удастся найти кого-то, кто уже проходил этот путь (ну вот я, например, проходил), и он сможет поделиться советами как наставник? У вас точно будут неожиданные вызовы, и нужно будет думать, как решать задачу. К примеру, руководитель часто решает вопросы, связанные с наймом и увольнением, а это довольно непростые вещи, так как предполагают общение с людьми, причем зачастую — довольно конфликтное.
У меня было так: я серчил вакансии руководителя и каждый раз обнаруживал, что все ищут руководителя с опытом работы 1-3 года. Я, напомню, был аналитиком данных. Меня всегда это интересовало, откуда может у меня появится опыт руководителя, если все ищут руководителя с опытом? Стало понятно, что опыт нужно создать.
Тогда я пошел к своему боссу в Yota и сказал, что у меня есть силы и ресурс обучить аналитике несколько чуваков из колл-центра, если у них будет норм бэкграунд. В Yota это называлось «ротационные». Собственно, это я и делал, отобрал их по резюме, и начал давать контент + задачи по теме, которые помогали разгрузить меня и создавали пользу для моего подразделения в Yota.
Так у меня появился первый опыт управления персоналом, и мне стали чуть лучше понятны концепции, которые описывали в книгах. Я даже начал экспериментировать и применять их на практике, например, разные способы мотивации.
Важно понять, что если вы были суперкрутой аналитик, дата сатанист или даже кэггл-грандмастер, на старте вы нулевой руководитель и вам по новой надо набираться опыта, проходить кривую опыта, быть готовым к тому, что вы теперь не звезда, а учитесь управлять людьми, а это очень сложно.
Обучаться дальше, расти, получать обратную связь от подчиненных, находить новые возможности получения результатов, сплачивать команду и кайфовать.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤🔥48🐳4💯1