Особенно интересное на конференции Coalesce - это публичный анонс моделей данных на Python. Об этом в презентации их продуктовой команды [1] и можно найти на сайте конференции [2] запись выступления, по ключевым словам "Announcing dbt's Second Language: When and Why We Turn to Python". По моему, пока доступно только после регистрации на сайте, но может уже выложили или скоро выложат для всех.
Хотя и поддержка моделей данных на Python там в зачаточном уровне, новость эта замечательна для тех кто не любит SQL или любит его сильно меньше чем программировать на Python. Например, я языки запросов к данным вроде SQL люблю сильно меньше чем обработать данные на скриптовом или ином языке программирования. Это сила привычки и вопрос доступности инструментов.
Авторы пока заявляют о том что эти модели в самом зачаточном виде, но с ними уже можно работать.
По ним уже есть документация [3], чат и дорожная карта.
Лично для меня главным недостатком dbt остаётся то что это инструмент, как и pandas, для работы с табличными (плоскими) моделями данных.
И, важно, конечно, помнить что самые продвинутые возможности по удобству они реализуют в своём dbt cloud IDE которое постепенно превращается в облачную среду подготовки данных [4].
Ссылки:
[1] https://docs.google.com/presentation/d/1e3wB7EQ0EXugGhfCjVCp_dDFEbY_uKyVjMqG1o7alnA/edit?usp=sharing
[2] https://coalesce.getdbt.com/
[3] https://docs.getdbt.com/docs/building-a-dbt-project/building-models/python-models
[4] https://docs.google.com/presentation/d/11-71MIh9ASGM2n-i0KxXc_yf6w1tq0l1bUobWdnfloY/edit?usp=sharing
#data #datatools #dbt #python #datamodelling
Хотя и поддержка моделей данных на Python там в зачаточном уровне, новость эта замечательна для тех кто не любит SQL или любит его сильно меньше чем программировать на Python. Например, я языки запросов к данным вроде SQL люблю сильно меньше чем обработать данные на скриптовом или ином языке программирования. Это сила привычки и вопрос доступности инструментов.
Авторы пока заявляют о том что эти модели в самом зачаточном виде, но с ними уже можно работать.
По ним уже есть документация [3], чат и дорожная карта.
Лично для меня главным недостатком dbt остаётся то что это инструмент, как и pandas, для работы с табличными (плоскими) моделями данных.
И, важно, конечно, помнить что самые продвинутые возможности по удобству они реализуют в своём dbt cloud IDE которое постепенно превращается в облачную среду подготовки данных [4].
Ссылки:
[1] https://docs.google.com/presentation/d/1e3wB7EQ0EXugGhfCjVCp_dDFEbY_uKyVjMqG1o7alnA/edit?usp=sharing
[2] https://coalesce.getdbt.com/
[3] https://docs.getdbt.com/docs/building-a-dbt-project/building-models/python-models
[4] https://docs.google.com/presentation/d/11-71MIh9ASGM2n-i0KxXc_yf6w1tq0l1bUobWdnfloY/edit?usp=sharing
#data #datatools #dbt #python #datamodelling