В рубрике как это устроено у них каталог открытого ПО для исследователей Research Software Repository (RSD)
Включает 1066 программных продуктов привязанных к 352 научным проектам, 529 организациям с упоминанием 2134 контрибьюторов и 27994 упоминания в научных работах.
Проект создан в eScienceCenter в Нидерландах и сам тоже с открытым кодом.
Кроме всего прочего они еще и скрейпят коммиты в Git репозитории на Github и других платформах и показывают уровень активности работы над репозиториями.
Сам проект тоже с открытым кодом.
Учитывая что большая часть ПО создано в рамках государственных научных программ, этот проект можно также рассматривать как портал систематизации, раскрытия и поиска государственного ПО в части научных исследований.
#opensource #research #openaccess
Включает 1066 программных продуктов привязанных к 352 научным проектам, 529 организациям с упоминанием 2134 контрибьюторов и 27994 упоминания в научных работах.
Проект создан в eScienceCenter в Нидерландах и сам тоже с открытым кодом.
Кроме всего прочего они еще и скрейпят коммиты в Git репозитории на Github и других платформах и показывают уровень активности работы над репозиториями.
Сам проект тоже с открытым кодом.
Учитывая что большая часть ПО создано в рамках государственных научных программ, этот проект можно также рассматривать как портал систематизации, раскрытия и поиска государственного ПО в части научных исследований.
#opensource #research #openaccess
✍3👍3
Для тех кто анализирует данные и тд. я масштабно обновил инструмент metacrafter https://github.com/apicrafter/metacrafter по идентификации семантических типов данных, включая персональные данные по многим странам и языка.
Что изменилось:
- добавлено много новых правил и обновлены имеющиеся
- сильно оптимизирован код для ускорения мэтчинга правил
- добавлена возможность фильтрации правил по стране (страна указывается в файле правил)
- добавлено множество опций для командной строки
Изменений много, они могут давать ложные срабатывания потому что некоторые правила таковы что много что под них может подпасть, поэтому управление правилами и улучшилось с точки зрения фильтрации по стране.
Собственно сами правила тоже обновились https://github.com/apicrafter/metacrafter-rules
Это не финальные изменения, а подготовка кода к интеграцию в Dateno.
#opensource #datatools #dataengineering
Что изменилось:
- добавлено много новых правил и обновлены имеющиеся
- сильно оптимизирован код для ускорения мэтчинга правил
- добавлена возможность фильтрации правил по стране (страна указывается в файле правил)
- добавлено множество опций для командной строки
Изменений много, они могут давать ложные срабатывания потому что некоторые правила таковы что много что под них может подпасть, поэтому управление правилами и улучшилось с точки зрения фильтрации по стране.
Собственно сами правила тоже обновились https://github.com/apicrafter/metacrafter-rules
Это не финальные изменения, а подготовка кода к интеграцию в Dateno.
#opensource #datatools #dataengineering
GitHub
GitHub - apicrafter/metacrafter: Metadata and data identification tool and Python library. Identifies PII, common identifiers,…
Metadata and data identification tool and Python library. Identifies PII, common identifiers, language specific identifiers. Fully customizable and flexible rules - apicrafter/metacrafter
👍3❤1🔥1
К вопросу о применении ИИ агентов для разработки в задачах ведения баз данных я вдруг понял какому количеству унаследованного кода и данных можно придать новую жизнь.
У меня есть как минимум две таких базы данных которые можно перевести в режим декларативной сборки набора данных и обогащение с помощью ИИ, это:
1. Реестр всех госдоменов в РФ используемый для цифровой архивации
2. Большой каталог всех межгосударственных структур (ОЭСР, ООН и тд.) с привязкой к странам и тд.
Первое вообще не вариант вести открыто уже давно, можно получить обвинение в помощи хакерам, улучшать его сейчас публично совсем сложно, даже при всех благих целях применения - архивации госсайтов.
А вот второе я веду уже лет 10, но года 4 уже не обновлял. Это штука регулярно необходимая для мэппинга разного рода объектов - данных, текстовых материалов и не только.
Одно из применений в визуализациях и аналитике когда надо сравнить какие-то абсолютные или средние значения показателей демографии, ВВП, размеров рынка и тд. по страновым блокам. Сравнить ЕС и БРИКС или рейтинги внутри странового блока.
В общем это большая база эффективно поддающаяся автоматическому обогащению данных и дополняемая метаданными по странам, в принципе, расширяемая от макрорегионов до субрегионов и тогда применяемая для задач обогащения данных и мэппинга много где.
К примеру, реестров стран в мире не меньше нескольких десятков. Когда надо мэппить разные объекты на страны чаще всего используют реестр стран ООН, ISO 3166, справочник Всемирного банка, справочник геослужбы США и несколько частных проектов с открытым кодом. Внутри Dateno активно используется python библиотека pycountry, но это не единственный и не идеальный способ.
Впрочем задачи Dateno с помощью pycountry и разметки через LLM решаются достаточно эффективно, поэтому я на вот этот дата продукт в виде межгосударственных организаций и всего остального рассматриваю скорее как хобби чем как рабочую задачу.
Важно то что трудоёмкость резко падает с применением ИИ агентов потому что теперь они умеют читать данные из Википедии, Wikidata и десятков других справочников с высоким уровнем качества обогащения данных. То на что могли бы уйти месяцы ручной работы можно сделать за несколько дней.
#opendata #opensource #thoughts
У меня есть как минимум две таких базы данных которые можно перевести в режим декларативной сборки набора данных и обогащение с помощью ИИ, это:
1. Реестр всех госдоменов в РФ используемый для цифровой архивации
2. Большой каталог всех межгосударственных структур (ОЭСР, ООН и тд.) с привязкой к странам и тд.
Первое вообще не вариант вести открыто уже давно, можно получить обвинение в помощи хакерам, улучшать его сейчас публично совсем сложно, даже при всех благих целях применения - архивации госсайтов.
А вот второе я веду уже лет 10, но года 4 уже не обновлял. Это штука регулярно необходимая для мэппинга разного рода объектов - данных, текстовых материалов и не только.
Одно из применений в визуализациях и аналитике когда надо сравнить какие-то абсолютные или средние значения показателей демографии, ВВП, размеров рынка и тд. по страновым блокам. Сравнить ЕС и БРИКС или рейтинги внутри странового блока.
В общем это большая база эффективно поддающаяся автоматическому обогащению данных и дополняемая метаданными по странам, в принципе, расширяемая от макрорегионов до субрегионов и тогда применяемая для задач обогащения данных и мэппинга много где.
К примеру, реестров стран в мире не меньше нескольких десятков. Когда надо мэппить разные объекты на страны чаще всего используют реестр стран ООН, ISO 3166, справочник Всемирного банка, справочник геослужбы США и несколько частных проектов с открытым кодом. Внутри Dateno активно используется python библиотека pycountry, но это не единственный и не идеальный способ.
Впрочем задачи Dateno с помощью pycountry и разметки через LLM решаются достаточно эффективно, поэтому я на вот этот дата продукт в виде межгосударственных организаций и всего остального рассматриваю скорее как хобби чем как рабочую задачу.
Важно то что трудоёмкость резко падает с применением ИИ агентов потому что теперь они умеют читать данные из Википедии, Wikidata и десятков других справочников с высоким уровнем качества обогащения данных. То на что могли бы уйти месяцы ручной работы можно сделать за несколько дней.
#opendata #opensource #thoughts
👍9✍2🤔2❤1🌚1
В качестве примера данных создаваемых и улучшаемых с помощью ИИ, публикую открытым кодом и открытыми данными Internacia Datasets (Internacia - это международный на эсператно).
В репозитории находятся наборы данных в форматах JSONl, YAML, Parquet и база DuckDB в которых содержатся данные о 252 странах и 727 группах стран и межгосударственных организациях. Там же подробности про содержание и структуру базы, примеры доступа и другие подробности.
Эти наборы данных собираются из большого числа YAML файлов из папок data/countries и data/intblocks. В свою очередь эти YAML файлы вручную или автоматизированно обновляются. В частности чтобы собрать эту базу я взял свою базу межгосударственных организаций 5-летней давности, поправил вручную самое критичное и привел в порядок с помощью ИИ агентов Antigravity и Cursor, после чего снова поправил и в итоге собрал имеющиеся записи в наборы данных.
В Dateno сейчас частично используются часть этой логики используется для мэппинга датасетов на страны, но после завершения SDK для Python'а оно заменит применяемую сейчас библиотеку pycountry на использование этого справочника. а заодно даст возможность, при желании, обогащать датасеты дополнительными фильтрами и метаданными по привязкам к геоблокам, например, отфильтровывая датасеты только из стран Евросоюза или стран БРИКС или стран Лиги арабских государств.
Сейчас идет активный рефакторинг части кода Dateno, так что этот компонент будет там использоваться.
А, в целом, у него много применений. Самое очевидное про которое я все время говорю - это региональные блоковые рейтинги. Хочется сделать рейтинг стран по открытости внутри политических блоков? Без проблем. Хочется отрейтинговать страны ОЭСР по ВВП? Тоже несложно. И многое и многое другое, это справочник, упакованный в современные форматы.
Источники датасета: собственная база, Wikipedia, Wikidata, сайты межгосударственных организаций, реестры стран ООН и Всемирного банка.
Важная особенность в том что в перечне стран есть не только те что являются членами ООН, но и суверенные территории и непризнанные государства. Поэтому их 252, в основе был справочник Всемирного Банка, а он включает многие суверенные территории не являющиеся членами ООН.
Дальнейшее развитие:
1. SDK для Python
2. REST API возможно вместе с другими похожими справочными данными
3. Расширение на субрегиональный уровень по кодам ISO3166-2 (точно не первый приоритет)
4. Исправление ошибок и дополнения метаданных
#opendata #opensource #dateno #datasets
В репозитории находятся наборы данных в форматах JSONl, YAML, Parquet и база DuckDB в которых содержатся данные о 252 странах и 727 группах стран и межгосударственных организациях. Там же подробности про содержание и структуру базы, примеры доступа и другие подробности.
Эти наборы данных собираются из большого числа YAML файлов из папок data/countries и data/intblocks. В свою очередь эти YAML файлы вручную или автоматизированно обновляются. В частности чтобы собрать эту базу я взял свою базу межгосударственных организаций 5-летней давности, поправил вручную самое критичное и привел в порядок с помощью ИИ агентов Antigravity и Cursor, после чего снова поправил и в итоге собрал имеющиеся записи в наборы данных.
В Dateno сейчас частично используются часть этой логики используется для мэппинга датасетов на страны, но после завершения SDK для Python'а оно заменит применяемую сейчас библиотеку pycountry на использование этого справочника. а заодно даст возможность, при желании, обогащать датасеты дополнительными фильтрами и метаданными по привязкам к геоблокам, например, отфильтровывая датасеты только из стран Евросоюза или стран БРИКС или стран Лиги арабских государств.
Сейчас идет активный рефакторинг части кода Dateno, так что этот компонент будет там использоваться.
А, в целом, у него много применений. Самое очевидное про которое я все время говорю - это региональные блоковые рейтинги. Хочется сделать рейтинг стран по открытости внутри политических блоков? Без проблем. Хочется отрейтинговать страны ОЭСР по ВВП? Тоже несложно. И многое и многое другое, это справочник, упакованный в современные форматы.
Источники датасета: собственная база, Wikipedia, Wikidata, сайты межгосударственных организаций, реестры стран ООН и Всемирного банка.
Важная особенность в том что в перечне стран есть не только те что являются членами ООН, но и суверенные территории и непризнанные государства. Поэтому их 252, в основе был справочник Всемирного Банка, а он включает многие суверенные территории не являющиеся членами ООН.
Дальнейшее развитие:
1. SDK для Python
2. REST API возможно вместе с другими похожими справочными данными
3. Расширение на субрегиональный уровень по кодам ISO3166-2 (точно не первый приоритет)
4. Исправление ошибок и дополнения метаданных
#opendata #opensource #dateno #datasets
👍7✍2❤1🔥1
В рубрике полезных инструментов для сбора данных tdl (Telegram Downloader) инструмент командной строки,написан на Go, под лицензией AGPL-3.0, позволяет выгружать списки сообщений, сами сообщения и файлы и проводить другие манипуляции по выгрузке списков чатов, их участников и другой информации.
Выглядит как полезный инструмент для разных задач: мониторинга телеграм каналов, OSINT, создания наборов данных по тематикам и, конечно, цифровой архивации. Для последней задачи инструмент хорошо бы доработать и добавить команду "archive" для создания или обновления полного слепка данных, но можно и сделать надстройку над этой утилитой.
Что важно - это живая разработка, с 18 контрибьюторами, основной разработчик и часть контрибьютров китайскоязычные, видимо я пропустил когда в Китае Телеграм начал набирать популярность.
Мне лично нравится как сделан этот инструмент по архитектуре, логике команд, набору опций (выкачивать только сообщения, скачивать медиа) и так далее. Хотелось бы такой же, но универсальный для разных платформ и соцсетей или даже отдельные для других платформ сделанные по схожей логике. Для РФ скоро будет актуален инструмент для выгрузки чатов и каналов в MAX потому что у MAX'а нет открытой веб версии без авторизации как это есть у телеграм'а (пример - https://t.me/s/begtin) и все что создается внутри платформы не архивируется. Но это уже отдельная тема.
Пока же tdl полезный инструмент для телеграма и хорошая референсная реализация подобных инструментов для других задач.
#opendata #opensource #digitalpreservation #data #tools
Выглядит как полезный инструмент для разных задач: мониторинга телеграм каналов, OSINT, создания наборов данных по тематикам и, конечно, цифровой архивации. Для последней задачи инструмент хорошо бы доработать и добавить команду "archive" для создания или обновления полного слепка данных, но можно и сделать надстройку над этой утилитой.
Что важно - это живая разработка, с 18 контрибьюторами, основной разработчик и часть контрибьютров китайскоязычные, видимо я пропустил когда в Китае Телеграм начал набирать популярность.
Мне лично нравится как сделан этот инструмент по архитектуре, логике команд, набору опций (выкачивать только сообщения, скачивать медиа) и так далее. Хотелось бы такой же, но универсальный для разных платформ и соцсетей или даже отдельные для других платформ сделанные по схожей логике. Для РФ скоро будет актуален инструмент для выгрузки чатов и каналов в MAX потому что у MAX'а нет открытой веб версии без авторизации как это есть у телеграм'а (пример - https://t.me/s/begtin) и все что создается внутри платформы не архивируется. Но это уже отдельная тема.
Пока же tdl полезный инструмент для телеграма и хорошая референсная реализация подобных инструментов для других задач.
#opendata #opensource #digitalpreservation #data #tools
GitHub
GitHub - iyear/tdl: 📥 A Telegram toolkit written in Golang
📥 A Telegram toolkit written in Golang. Contribute to iyear/tdl development by creating an account on GitHub.
👍12✍6⚡2❤1
Open source продукт Minio по организации своего S3-совместимого хранилища больше не open source. 2 декабря разработчики обновили файл README.md где указали что проект теперь только в maintenance mode (режиме обслуживания) и новые возможности и исправление багов более не происходят. Вместо него разработчики теперь продвигают коммерческий продукт MinIO AIStor (хранилище для ИИ продуктов). Это более жесткий сценарий чем то что делали Elasticsearch и MongoDB с лицензией SSPL. Те хотя бы оставляли код для исправления ошибок и проблема была скорее в том что контрибьюторы вкладывались в продукт с ограничениями по лицензированию, а в случае Minio это переход от открытого кода к закрытому продукта.
А большинству ИТ команд теперь придется убирать Minio из своих технологических стеков.
#opensource #minio #techstack
А большинству ИТ команд теперь придется убирать Minio из своих технологических стеков.
#opensource #minio #techstack
😢16❤3😁3👍2😱1💔1
Как обмениваться большими файлами не привлекая внимания санитаров без необходимости использовать облачные диски или аренды серверов? AltSendme инструмент по отправке данных через зашифрованное peer-to-peer соединение, представляет собой GUI приложение для Linux, Windows и Mac. Можно выбрать конкретный файл и после нажатия на "Start sharing" приложение создает длинны код/тикет который надо любым способом передать получателю и который после ввода этого кода в это же приложение у себя быстро и напрямую скачивает файл.
Лично у меня реакция на такое "почему это не я придумал?!" потому что инструмент простой и полезный.
Всё это с открытым кодом, использует p2p прокотолы iroh у которых также есть аналогичная утилита SendMe для командной строки, также с открытым кодом.
Этот инструмент не единственный, их становится больше, интересно когда появятся первые proxy/vpn инструменты такой же природы? А может они уже и есть.
#opensource #filetransfer #tools #datatools
Лично у меня реакция на такое "почему это не я придумал?!" потому что инструмент простой и полезный.
Всё это с открытым кодом, использует p2p прокотолы iroh у которых также есть аналогичная утилита SendMe для командной строки, также с открытым кодом.
Этот инструмент не единственный, их становится больше, интересно когда появятся первые proxy/vpn инструменты такой же природы? А может они уже и есть.
#opensource #filetransfer #tools #datatools
🔥19❤5✍2
Ещё один полезный инструмент для дата инженера и аналитика data-peek SQL клиент для десктопа под Windows, Mac и Linux с поддержкой PostgreSQL, MySQL и Microsoft SQL. Для личного пользования лицензия MIT и открытый код, для коммерческого отдельная лицензия и платное использование.
В целом ничего нового, кроме построителя SQL запросов через ИИ модели, поддерживает многие модели включая локальные через Ollama.
Как же много таких клиентов появилось в последнее время, кто бы сделал аналогичное для NoSQL: Elasticsearch, OpenSearch, MongoDB и тд.
А еще лучше для SPARQL'я потому что программировать SPARQL запросы это боль для психически неподготовленной личности. Именно очеловечивание запросов способно придать SPARQL'ю новую жизнь, по моему разумению.
Но понятно, на самом деле, почему таких инструментов нет, потому что ёмкость рынка инструментов для SQL превышает все остальные. Но тогда уж надо добавлять поддержку не Microsoft SQL, а Clickhouse, SQLite, DuckDB и тд.
#opensource #datatools #dataengineering #tools
В целом ничего нового, кроме построителя SQL запросов через ИИ модели, поддерживает многие модели включая локальные через Ollama.
Как же много таких клиентов появилось в последнее время, кто бы сделал аналогичное для NoSQL: Elasticsearch, OpenSearch, MongoDB и тд.
А еще лучше для SPARQL'я потому что программировать SPARQL запросы это боль для психически неподготовленной личности. Именно очеловечивание запросов способно придать SPARQL'ю новую жизнь, по моему разумению.
Но понятно, на самом деле, почему таких инструментов нет, потому что ёмкость рынка инструментов для SQL превышает все остальные. Но тогда уж надо добавлять поддержку не Microsoft SQL, а Clickhouse, SQLite, DuckDB и тд.
#opensource #datatools #dataengineering #tools
👏5👍2❤1🔥1🤝1
В продолжение инструментов работы с данными, я на днях обновил утилиту undatum которую создавал для разных манипуляций с данными в командной строке. Главная была особенность в том что она кроме CSV файлов поддерживает всяческие структурированные не плоские форматы данных вроде JSONL, BSON, Parquet и тд.
А также умеет автодокументировать датасеты.
Собственно свежее изменение в том что теперь автодокументирование расширилось поддержкой любых LLM'ом через Ollama, LM Studio, Perplexity, OpenAI и OpenRouter и в поддержке множества языков, можно получать описание буквально на любом языке поддерживаемом выбранной LLM.
Автодокументирование работает не быстро, но зависит только от скорости работы LLM, а не от размера набора данных. Оно полезно для многих задач, у меня лично много задач с тем чтобы приводить описания наборов данных в порядок и один из способов для этого в использовании вот этого инструмента
У меня в отложенных задачах есть интеграция его с утилитой metacrafter, но это уже как-то позже.
#opensource #datatools #ai
А также умеет автодокументировать датасеты.
Собственно свежее изменение в том что теперь автодокументирование расширилось поддержкой любых LLM'ом через Ollama, LM Studio, Perplexity, OpenAI и OpenRouter и в поддержке множества языков, можно получать описание буквально на любом языке поддерживаемом выбранной LLM.
Автодокументирование работает не быстро, но зависит только от скорости работы LLM, а не от размера набора данных. Оно полезно для многих задач, у меня лично много задач с тем чтобы приводить описания наборов данных в порядок и один из способов для этого в использовании вот этого инструмента
У меня в отложенных задачах есть интеграция его с утилитой metacrafter, но это уже как-то позже.
#opensource #datatools #ai
1🔥7
Google обновили Magika инструмент для идентификации типов файлов в зависимости от содержимого. Пишут что теперь он поддерживает более 200 форматов файлов (ранее было 100), полностью переписан на Rust и работает существенно быстрее. Можно обратить внимание что многие из упомянутых новыз форматов файлов это файлы с данными npz, pytorch, parquet, h5 и файлы кода zig, dart, kotlin и тд. Фактически Magika это альтернатива идентификации типа файла по расширению и альтернатива magic (утилита идентификации файлов в Unix-подобных операционных системах) и утилитам Siegfried и DROID используемых цифровыми архивистами.
Выглядит полезно, надо пробовать. Прошлая версия, как я помню, давала какое-то количество ложнопозитивных результатов, возможно в этом направлении тоже есть прогресс.
Как минимум области применения тут в задачах цифровой архивации, работы с разного рода унаследованными материалами, в цифровой форенсике и еще много в чем.
Что характерно Magika занимается команда Security research в Google, а то есть можно предполагать что основное применение это, все же, цифровая форенсика.
Из интересного, разработчики пишут что чтобы обучить Magika они использовали 3-х террабайтный несжатый датасет.
В целом видно что над проектом работает группа ИИ инженеров, но не методистов и это сопутствующий продукт их работы потому что иначе они бы начали с реестра типов mime и расширений в который собрали бы метаданные из PRONOM и пары других крупных реестров форматов файлов.
#opensource #google #datatools #forensics
Выглядит полезно, надо пробовать. Прошлая версия, как я помню, давала какое-то количество ложнопозитивных результатов, возможно в этом направлении тоже есть прогресс.
Как минимум области применения тут в задачах цифровой архивации, работы с разного рода унаследованными материалами, в цифровой форенсике и еще много в чем.
Что характерно Magika занимается команда Security research в Google, а то есть можно предполагать что основное применение это, все же, цифровая форенсика.
Из интересного, разработчики пишут что чтобы обучить Magika они использовали 3-х террабайтный несжатый датасет.
В целом видно что над проектом работает группа ИИ инженеров, но не методистов и это сопутствующий продукт их работы потому что иначе они бы начали с реестра типов mime и расширений в который собрали бы метаданные из PRONOM и пары других крупных реестров форматов файлов.
#opensource #google #datatools #forensics
1❤8🔥6