Ivan Begtin
8.09K subscribers
1.99K photos
3 videos
102 files
4.7K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts ivan@begtin.tech
Download Telegram
Свежий доклад ООН по Индикаторам устойчивого развития (SDG) [1]. Это те самые цели устойчивого развития которые являются одним из приоритетов ООН и по которым большинство стран публикуют свои показатели.

Из доклада можно узнать что:
- большая часть показателей не достигается
- всё ещё много проблем с тем что не по всем странам публикуются данные индикаторов и не всегда актуально

И, кстати, но это уже отдельная тема, много международных инициатив сейчас началось по достижению целей SDG в развивающихся странах и туда активно вовлечены бигтехи, которые или спонсируют такое, или даже помогают данными.

Ссылки:
[1] https://hlpf.un.org/sites/default/files/2024-05/SG%20SDG%20Progress%20Report%202024.pdf

#opendata #un #sdg #indicators #reports
Я уже рассказывал про геоклассификацию данных в Dateno и то что существенная фича в поиске - это возможность поиска по городам/регионам, на субрегиональном уровне. Классификация датасетов по субрегионам основана почти полностью на аннотировании каталогов данных и с этой точки зрения это довольно простая задача с понятным решением.

Как оказывается куда менее простой задачей является привязка датасетов к странам и макрорегионам.

Базово привязка эта привязка делается через привязку каталога данных которые, как правило, конкретными странами ограничены. К примеру, если есть национальный портал данных какой-то страны, то и данные почти всегда касаются этой страны. Но это самые простые случаи и в основном про порталы открытых данных и про геопорталы.

Сложности начинаются с научными данными. Большая их часть чёткой геопривязки может не иметь вообще, кроме ну разве что, академического института(-ов) авторов и их местонахождения. Исключение составляют редкие датасеты из наук о земле, лингвистики и ещё ряда научных дисциплин.

Другая сложность возникает со всей статистикой и производными индикаторами. Помимо стат. показателей по странам существует неимоверное число разных групп стран, от простых, до хитровыдуманных. К примеру, группы арабских стран, страны MENA, G20, G7, Андское сообщество, наименее развитые страны, страны без выхода к морю и ещё много какие. Причём, конечно, группы стран пересекаются, но не всегда входят в друг друга.

Внутри Dateno, при этом, для группировки стран используется список макрорегионов из UN M49. Разметить страны по вхождение в эти макрорегионы несложно и внутренний справочник для этого есть. А вот справочника вхождения стран в эти многочисленные группы и их пересечений - нет и его надо составлять де-факто полувручную и нет кого-то кто бы поддерживал такую живую базу данных или программную библиотеку.

Поэтому георазметка реальных мировых статистических данных - это боль, требующая большой ручной работы по привязке к макрорегионам.

Пока что отсутствие привязки каких-то датасетов к странам и макрорегионам не так критичны поскольку другие поисковики даже такого не поддерживают и есть фасеты где разметка куда хуже. К примеру, наличие информации о лицензии есть не более чем у 10% датасетов.

Тем не менее качество фасетов в Dateno влияет на пользовательский опыт и это важная задача для построения максимально достоверного поискового индекса по данным.

#dateno #statistics #indicators #geodata #geo #thoughts
Вышла бета версия германской статистической системы GENESIS-Online используемой статслужбой страны для публикации индикаторов [1]. В целом удобно, но скорее консервативно чем современно.

Из плюсов:
- есть API
- есть выгрузка в CSV/XLSX
- всё достаточно быстро и удобно

Из минусов:
- документированное API требует регистрации и авторизации, недокументированное... недокументировано
- документированное API сделано предоставляет SOAP интерфейс, непонятно зачем в 2024 году
- нет поддержки SDMX
- нет массовой выгрузки, bulk download

В целом, это скорее даже удивительно насколько статистика ЕС удобнее в работе чем статистика Германии, по крайней мере инструментально.

Ссылки:
[1] https://www-genesis.destatis.de/datenbank/beta

#opendata #statistics #germany #datacatalogs #indicators
В рубрике как это устроено у них я уже несколько раз писал про проект DBNomics [1] от французского think tank'а Cepremap и поддерживаемый пр-вом Франции.

Это огромный каталог, в основном, макроэкономических показателей из 92 источников, и в виде 35 тысяч датасетов и 1.4 миллиона временных рядов.

Реально огромная база индикаторов из всех ключевых источников. Чем-то похоже на то что у нас в Dateno, с той лишь разницей что в Dateno индикаторы - это лишь часть индексируемых данных и индексируются индикаторы вообще все, а не только экономические, но число источников пока и больше и меньше. Больше потому что сбор из стандартизированных источников, а меньше потому что основные данные не в них а в крупных больших базах индикаторов для которых надо писать отдельные парсеры.

Тем не менее, в нашей трактовке то что в DBNomics называется временным рядом, у нас скорее это датасет. Возможно даже, нам надо добавить отдельную типизацию данных по типам для большей точности.

Глядя на DBNomics всегда возникает вопрос, надо ли его индексировать или рассматривать только как источник информации о каталогах данных? Потому что он не первоисточник и по мере индексации первичных источников будет много дублей. А с другой стороны, данные в нём представлены куда более удобно и с ними легче работать.

До конца года хочется подключить к Dateno ещё хотя бы 5-6 миллионов наборов данных, что не так сложно, как хочется максимальной пользы от этого.

А у DBNomics также, есть открытый код, кстати, хорошее API и вообще это скорее дата продукт полноценный чем просто статистический портал.

Ссылки:
[1] https://db.nomics.world

#opendata #statistics #indicators #france #dateno