В качестве напоминания, у Dateno есть телеграм канал @datenosearch где регулярно будут новости проекта, в основном на английском языке (на русском я тут в своём канале обо всём и так пишу). Тем не менее подписывайтесь, наиболее актуальные новости проекта, лайфхаки, примеры и тд будут именно там.
#dateno
#dateno
Dateno
Dateno - datasets search engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.
⚡3👍3
Я периодически рассказываю о внутренностях не только Dateno, но и реестра каталогов данных на которых он основан. Я начинал его делать ещё в до самого поисковика и изначально он был разделен на две части.
1-я - это чистовые дата каталоги, по которым метаданные, в основном, собранные вручную. Они были в репозитории в каталоге entries и каждая запись выглядела как YAML файл по определённой структуре. У них был префикс 'cdi' для идентификаторов.
2-я - это временные записи, которые не проходили ручную верификацию и которых было около половины всех каталогов. По ним не были заполнены большая часть сведений которые часто из реестра удалялись. Эти записи были родом из системы поиска каталогов данных которая иногда находила те из них которые уже давно удалены. Они существовали с префиксом "temp" и были в каталоге scheduled.
В итоге оказалось что при обновлении метаданных каждый раз была необходимость удалять старый префикс и назначать новый, а также в том что разделение неэффективно. Приходилось дублировать все операции по обогащению данных на два каталога.
Поэтому одно из важных актуальных изменений реестра в том чтобы свести их в единую модель. И сейчас в последней версии реестра на Github'е [1] лежит датасет с переназначенными идентификаторами и теперь можно приступать к повышению качества каталога автоматизировав присвоение тегов, тем и описаний каждому из них. Это, кстати, то для чего можно применить LLM почти наверняка.
Но это то что является disruptive change поскольку даже временные каталоги данных индексировались в Dateno и их переиндексирование и обновление поиска поменяет некоторые ссылки и в реестре [2] и для датасетов в будущем. Поэтому на самом поиске это отразится не раньше чем через какое-то время, не в ближайшем обновлении.
Реестр - это важная часть качества поиска Dateno поскольку характеристики каталога данных транслируются на датасеты. Если, к примеру, источник данных посвящён здравоохранению то и его параметры переносятся на наборы данных в нём проиндексированные. Это позволяет искать даже те датасеты которые которые своих метаданных имеют мало или почти не содержат. К примеру, почти все датасеты на серверах ArcGIS и Geoserver, но вот их обогащение почти невозможно проводить автоматически, потому на них нет описания содержания этих данных. Геокаталоги, не все, но многие, автоматически документируются довольно плохо. Их наличие делает Dateno одним из наиболее полных поисковиков по геоданным, но искать их сложно если только эти данные не описаны где-то ещё, например, в каталогах Geonetwork со ссылками на георесурсы.
Ссылки:
[1] https://github.com/commondataio/dataportals-registry/
[2] https://dateno.io/registry
#dateno #opendata #datasets
1-я - это чистовые дата каталоги, по которым метаданные, в основном, собранные вручную. Они были в репозитории в каталоге entries и каждая запись выглядела как YAML файл по определённой структуре. У них был префикс 'cdi' для идентификаторов.
2-я - это временные записи, которые не проходили ручную верификацию и которых было около половины всех каталогов. По ним не были заполнены большая часть сведений которые часто из реестра удалялись. Эти записи были родом из системы поиска каталогов данных которая иногда находила те из них которые уже давно удалены. Они существовали с префиксом "temp" и были в каталоге scheduled.
В итоге оказалось что при обновлении метаданных каждый раз была необходимость удалять старый префикс и назначать новый, а также в том что разделение неэффективно. Приходилось дублировать все операции по обогащению данных на два каталога.
Поэтому одно из важных актуальных изменений реестра в том чтобы свести их в единую модель. И сейчас в последней версии реестра на Github'е [1] лежит датасет с переназначенными идентификаторами и теперь можно приступать к повышению качества каталога автоматизировав присвоение тегов, тем и описаний каждому из них. Это, кстати, то для чего можно применить LLM почти наверняка.
Но это то что является disruptive change поскольку даже временные каталоги данных индексировались в Dateno и их переиндексирование и обновление поиска поменяет некоторые ссылки и в реестре [2] и для датасетов в будущем. Поэтому на самом поиске это отразится не раньше чем через какое-то время, не в ближайшем обновлении.
Реестр - это важная часть качества поиска Dateno поскольку характеристики каталога данных транслируются на датасеты. Если, к примеру, источник данных посвящён здравоохранению то и его параметры переносятся на наборы данных в нём проиндексированные. Это позволяет искать даже те датасеты которые которые своих метаданных имеют мало или почти не содержат. К примеру, почти все датасеты на серверах ArcGIS и Geoserver, но вот их обогащение почти невозможно проводить автоматически, потому на них нет описания содержания этих данных. Геокаталоги, не все, но многие, автоматически документируются довольно плохо. Их наличие делает Dateno одним из наиболее полных поисковиков по геоданным, но искать их сложно если только эти данные не описаны где-то ещё, например, в каталогах Geonetwork со ссылками на георесурсы.
Ссылки:
[1] https://github.com/commondataio/dataportals-registry/
[2] https://dateno.io/registry
#dateno #opendata #datasets
GitHub
GitHub - commondataio/dataportals-registry: Registry of data portals, catalogs, data repositories including data catalogs dataset…
Registry of data portals, catalogs, data repositories including data catalogs dataset and catalog description standard - commondataio/dataportals-registry
❤4✍2👍1
Мою презентация с сегодняшнего Дня открытых данных в России можно посмотреть онлайн https://www.beautiful.ai/player/-OKHlQrIzuA3Bba4k-Uz
Она была полностью посвящена Dateno и практике поиска датасетов. Это не первая и не последняя моя презентация по этой теме, но как водораздел обновления Dateno до 22 миллионов датасетов.
#opendata #dateno
Она была полностью посвящена Dateno и практике поиска датасетов. Это не первая и не последняя моя презентация по этой теме, но как водораздел обновления Dateno до 22 миллионов датасетов.
#opendata #dateno
Beautiful.ai
Dateno 01.03.2025
Get started with Beautiful.ai today.
👍15
Forwarded from Dateno
🚀 Dateno Enters Industrial Operation – Redefining Global Dataset Search
We’re excited to announce that Dateno has officially transitioned to full-scale industrial operation! 🎉 Now, data professionals worldwide can seamlessly access over 20 million high-quality datasets with advanced filtering, API integration, and continuously updated sources.
🔍 What makes Dateno stand out?
✅ Extensive dataset collection – 20M+ datasets indexed, aiming for 30M.
✅ Advanced filtering – Search by dataset owner, geography, topic, and more.
✅ AI-powered search – Recognizes semantic relationships (DOI, geolocation).
✅ API-first approach – Seamless integration into analytics & ML pipelines.
✅ High-quality, ad-free data – Focused on clean, structured, and trustworthy datasets.
💡 What’s next?
🔹 Expanding the dataset index to cover even more industries & research fields.
🔹 Improving search quality & user experience.
🔹 Enhancing AI-driven search for more relevant results.
🔹 Adding new API capabilities for seamless integration.
🔹 Launching tools to help professionals derive deeper insights.
Dateno is more than a search engine – it’s an ecosystem built to make data discovery effortless. 🌍
Join us and experience the next level of fast, precise, and integrated dataset search!
👉 Learn more: dateno.io
📩 Contact us: dateno@dateno.io
#Dateno #DataSearch #MachineLearning #BigData #AI
We’re excited to announce that Dateno has officially transitioned to full-scale industrial operation! 🎉 Now, data professionals worldwide can seamlessly access over 20 million high-quality datasets with advanced filtering, API integration, and continuously updated sources.
🔍 What makes Dateno stand out?
✅ Extensive dataset collection – 20M+ datasets indexed, aiming for 30M.
✅ Advanced filtering – Search by dataset owner, geography, topic, and more.
✅ AI-powered search – Recognizes semantic relationships (DOI, geolocation).
✅ API-first approach – Seamless integration into analytics & ML pipelines.
✅ High-quality, ad-free data – Focused on clean, structured, and trustworthy datasets.
💡 What’s next?
🔹 Expanding the dataset index to cover even more industries & research fields.
🔹 Improving search quality & user experience.
🔹 Enhancing AI-driven search for more relevant results.
🔹 Adding new API capabilities for seamless integration.
🔹 Launching tools to help professionals derive deeper insights.
Dateno is more than a search engine – it’s an ecosystem built to make data discovery effortless. 🌍
Join us and experience the next level of fast, precise, and integrated dataset search!
👉 Learn more: dateno.io
📩 Contact us: dateno@dateno.io
#Dateno #DataSearch #MachineLearning #BigData #AI
2🎉12⚡5🔥5❤2🤩2👍1
Читаю работу OpenAlex: End-to-End Process for Topic Classification [1] от команды графа по научным работам OpenAlex о том как они классифицируют научные работы по каким темам и там у них есть иерархическая модель разметки работ по уровням Domains -> Fields -> Subfields -> Topics, причём тем (topics) довольно много и они привязаны все к статьям в Википедии. А вообще они построили свою классификацию через идентификацию макрокластеров [3] сообществ через цитирование. Большая и интересная тема, с понятной сложностью и результатами.
Я на всё это смотрю с точки зрения улучшения классификации датасетов в Dateno [4]. Сейчас в Dateno используется два классификатора. Европейский Data Theme [5] используемый в их портале data.europe.eu, но у него всего 13 тем очень верхнеуровневых и тематические категории (topic category) из ISO 19115 [6] которых 19 штук и тоже без иерархии. Тематические категории используются в каталогах данных на базе Geonetwork и в программе INSPIRE Евросоюза и они применимы к геоданным, в первую очередь.
Это одна из особенностей Dateno, да и остальных индексаторов датасетов. По разным блокам и типам каталогов данных свои тематические категории, не связанные между собой и кроме обычных датасетов и геоданных есть ещё и большие банки статистических данных живущих по своим правилам и своим группам.
Сложностей несколько:
- в отличие от научных работ здесь нет цитирования или аналогичных связей, значительно сложнее строить смысловые кластеры. Их можно строить на названиях, оригинальных тематиках в первоисточнике, тематиках самого первоисточника, но не на цитировании и не на связях.
- язык науки в мире почти весь английский, а там где не английский то французский, но в целом все исходят из того что он английский. А среди датасетов много данных на самых разных языках. Тут как раз проще со статистикой которая почти всегда имеет английскую версию и сложнее с остальным.
Тем не менее своя классификация необходима и её идеальные параметры были бы когда одна тема охватывает не более 10 тысяч наборов данных или временных рядов. То есть если мы имеем базу в 22 миллиона набора датасетов, то тематик должно быть не менее 2.2 тысяч, а ещё лучше не менее 5 тысяч. Тогда пользователь получает возможность быстро сузить поиск до нужной ему темы. Тогда у Dateno появляется ещё одна важная модель его применения, это подписка на появление нужных данных в одной или нескольких узких областях избегая ложных срабатываний при ключевых словах.
Без ИИ тут, кстати, не обойтись и ребята из OpenAlex использовали модель GPT 3.5 Turbo [7] для кластеризации научных работ и подбора названий выявленным кластерам.
Ссылки:
[1] https://docs.google.com/document/d/1bDopkhuGieQ4F8gGNj7sEc8WSE8mvLZS/edit?tab=t.0
[2] https://docs.google.com/spreadsheets/d/1v-MAq64x4YjhO7RWcB-yrKV5D_2vOOsxl4u6GBKEXY8/edit?gid=983250122#gid=983250122
[3] https://zenodo.org/records/10560276
[4] https://dateno.io
[5] https://op.europa.eu/en/web/eu-vocabularies/concept-scheme/-/resource?uri=http://publications.europa.eu/resource/authority/data-theme
[6] https://apps.usgs.gov/thesaurus/term-simple.php?thcode=15&code=000
[7] https://www.leidenmadtrics.nl/articles/an-open-approach-for-classifying-research-publications
#opendata #opensource #dateno #thoughts
Я на всё это смотрю с точки зрения улучшения классификации датасетов в Dateno [4]. Сейчас в Dateno используется два классификатора. Европейский Data Theme [5] используемый в их портале data.europe.eu, но у него всего 13 тем очень верхнеуровневых и тематические категории (topic category) из ISO 19115 [6] которых 19 штук и тоже без иерархии. Тематические категории используются в каталогах данных на базе Geonetwork и в программе INSPIRE Евросоюза и они применимы к геоданным, в первую очередь.
Это одна из особенностей Dateno, да и остальных индексаторов датасетов. По разным блокам и типам каталогов данных свои тематические категории, не связанные между собой и кроме обычных датасетов и геоданных есть ещё и большие банки статистических данных живущих по своим правилам и своим группам.
Сложностей несколько:
- в отличие от научных работ здесь нет цитирования или аналогичных связей, значительно сложнее строить смысловые кластеры. Их можно строить на названиях, оригинальных тематиках в первоисточнике, тематиках самого первоисточника, но не на цитировании и не на связях.
- язык науки в мире почти весь английский, а там где не английский то французский, но в целом все исходят из того что он английский. А среди датасетов много данных на самых разных языках. Тут как раз проще со статистикой которая почти всегда имеет английскую версию и сложнее с остальным.
Тем не менее своя классификация необходима и её идеальные параметры были бы когда одна тема охватывает не более 10 тысяч наборов данных или временных рядов. То есть если мы имеем базу в 22 миллиона набора датасетов, то тематик должно быть не менее 2.2 тысяч, а ещё лучше не менее 5 тысяч. Тогда пользователь получает возможность быстро сузить поиск до нужной ему темы. Тогда у Dateno появляется ещё одна важная модель его применения, это подписка на появление нужных данных в одной или нескольких узких областях избегая ложных срабатываний при ключевых словах.
Без ИИ тут, кстати, не обойтись и ребята из OpenAlex использовали модель GPT 3.5 Turbo [7] для кластеризации научных работ и подбора названий выявленным кластерам.
Ссылки:
[1] https://docs.google.com/document/d/1bDopkhuGieQ4F8gGNj7sEc8WSE8mvLZS/edit?tab=t.0
[2] https://docs.google.com/spreadsheets/d/1v-MAq64x4YjhO7RWcB-yrKV5D_2vOOsxl4u6GBKEXY8/edit?gid=983250122#gid=983250122
[3] https://zenodo.org/records/10560276
[4] https://dateno.io
[5] https://op.europa.eu/en/web/eu-vocabularies/concept-scheme/-/resource?uri=http://publications.europa.eu/resource/authority/data-theme
[6] https://apps.usgs.gov/thesaurus/term-simple.php?thcode=15&code=000
[7] https://www.leidenmadtrics.nl/articles/an-open-approach-for-classifying-research-publications
#opendata #opensource #dateno #thoughts
👍6✍3
В продолжение портала открытых данных Франции, из его фишек то что можно зарегистрироваться и публиковать свои датасеты. Вот я там разместил реестр каталогов данных из Dateno [1], просто примера ради. Потом могу добавить отдельно API Dateno (но там уже будет не CC-BY лицензия).
Хороший государственный портал открытых данных должен позволять публиковать данные не только госорганами.
Ссылки:
[1] https://www.data.gouv.fr/fr/datasets/data-portals-registry/
#opendata #dateno #datacatalogs
Хороший государственный портал открытых данных должен позволять публиковать данные не только госорганами.
Ссылки:
[1] https://www.data.gouv.fr/fr/datasets/data-portals-registry/
#opendata #dateno #datacatalogs
✍3
Я давно не писал про наш поисковик по данным Dateno, а там накопилось множество обновлений, надеюсь что вот-вот уже скоро смогу об этом написать. А пока приведу ещё пример в копилку задач как ИИ заменяет человека. Я много рассказывал про реестр дата каталогов который Dateno Registry dateno.io/registry, полезный для всех кто ищет не только данные, но и их источник. Этот реестр - это основа Dateno, в нём более 10 тысяч дата каталогов размеченных по разным характеристикам и с большими пробелами в описаниях. Откуда пробелы? потому что автоматизировать поиск источников удалось, а вот описание требует (требовало) много ручной работы.
Когда мы запускали Dateno на текущем реестре я оценивал трудоёмкость по его улучшению и повышении качества в полгода работы для пары человек вручную. Совсем немало скажу я вам, учитывая что этих людей ещё и надо обучить и
ещё надо контролировать качество работы и ещё и нужны инструменты чтобы всё это редактировать без ошибок.
В общем, чтобы долго не ходить, ИИ почти полностью справляется с этой задачей. Достаточно предоставить url сайта с каталогом данных и из него хорошо извлекаются все необходимые метаданные.
Для стартапа на данных - это очень заметное изменение. И это маленькая и теперь недорогая задача. После всех проверок можно будет значительно обновить реестр.
Кстати, о том зачем он нужен. Реестр каталогов данных точно нужен Dateno для индексации датасетов, но он же нужен и всем тем кто строит национальные порталы данных потому что позволяет агрегировать в него данные из всех национальных источников.
#opendata #dateno #datasets #dataengineering #llm #ai #dataunderstanding
Когда мы запускали Dateno на текущем реестре я оценивал трудоёмкость по его улучшению и повышении качества в полгода работы для пары человек вручную. Совсем немало скажу я вам, учитывая что этих людей ещё и надо обучить и
ещё надо контролировать качество работы и ещё и нужны инструменты чтобы всё это редактировать без ошибок.
В общем, чтобы долго не ходить, ИИ почти полностью справляется с этой задачей. Достаточно предоставить url сайта с каталогом данных и из него хорошо извлекаются все необходимые метаданные.
Для стартапа на данных - это очень заметное изменение. И это маленькая и теперь недорогая задача. После всех проверок можно будет значительно обновить реестр.
Кстати, о том зачем он нужен. Реестр каталогов данных точно нужен Dateno для индексации датасетов, но он же нужен и всем тем кто строит национальные порталы данных потому что позволяет агрегировать в него данные из всех национальных источников.
#opendata #dateno #datasets #dataengineering #llm #ai #dataunderstanding
Dateno
Dateno - datasets search engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.
❤5✍4👍4
Forwarded from Dateno
Global stats just got a major upgrade at Dateno!
We’ve updated time series from the World Bank (DataBank) and International Labour Organization (ILOSTAT) — now available in a more powerful and usable format.
📊 What’s new?
19,000+ indicators across economics, employment, trade, health & more
3.85 million time series with clean structure and rich metadata
Support for multiple export formats: CSV, Excel, JSON, Stata, Parquet, and more
Fully documented schemas and all source metadata included
We’re not just expanding our data coverage — we’re raising the bar for how usable and reliable open statistical data can be.
And there’s more coming:
📡 New sources of global indicators
🧠 Improved dataset descriptions
🧩 A specialized API for working with time series in extended formats
Have a specific use case for international statistics? We’d love to hear from you → dateno@dateno.io
🔍 Try it now: https://dateno.io
#openData #datadiscovery #statistics #dataengineering #dateno #worldbank #ILOSTAT
We’ve updated time series from the World Bank (DataBank) and International Labour Organization (ILOSTAT) — now available in a more powerful and usable format.
📊 What’s new?
19,000+ indicators across economics, employment, trade, health & more
3.85 million time series with clean structure and rich metadata
Support for multiple export formats: CSV, Excel, JSON, Stata, Parquet, and more
Fully documented schemas and all source metadata included
We’re not just expanding our data coverage — we’re raising the bar for how usable and reliable open statistical data can be.
And there’s more coming:
📡 New sources of global indicators
🧠 Improved dataset descriptions
🧩 A specialized API for working with time series in extended formats
Have a specific use case for international statistics? We’d love to hear from you → dateno@dateno.io
🔍 Try it now: https://dateno.io
#openData #datadiscovery #statistics #dataengineering #dateno #worldbank #ILOSTAT
Dateno
Dateno - datasets search engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.
🔥4👍1
В продолжение поста про статистику в Dateno. Это, в принципе, очень большое изменение в том как мы наполняем поисковик. Если раньше приоритет был на индексирование внешних ресурсов и поиск только по метаданным, то сейчас появилось как минимум 2 источника - это статистика Всемирного банка и Международной организации труда которая полностью загружена во внутреннее хранилище, разобрана и подготовлена и теперь можно:
1.Скачать данные в самых популярных форматах, а не только то как они представлены в первоисточнике
2. Видеть полную документированную спецификацию каждого показателя/временного ряда
3. Видеть все дополнительные метаданные как они есть в первоисточнике (подсказка, там больше полезного чем просто в карточке датасета).
Постепенно почти вся статистика в Dateno будет представлена аналогично, это десятки миллионов временных рядов и сотни тысяч индикаторов.
Для тех кто работает со статистикой профессионально мы подготовим API именно для доступ в банк статданных.
Примеры можно посмотреть в поиске фильтруя по источникам: World Bank Open Data и ILOSTAT.
Примеры датасетов:
- набор данных Всемирного банка
- набор данных Международной организации труда
#opendata #dateno #search #datasets #statistics
1.Скачать данные в самых популярных форматах, а не только то как они представлены в первоисточнике
2. Видеть полную документированную спецификацию каждого показателя/временного ряда
3. Видеть все дополнительные метаданные как они есть в первоисточнике (подсказка, там больше полезного чем просто в карточке датасета).
Постепенно почти вся статистика в Dateno будет представлена аналогично, это десятки миллионов временных рядов и сотни тысяч индикаторов.
Для тех кто работает со статистикой профессионально мы подготовим API именно для доступ в банк статданных.
Примеры можно посмотреть в поиске фильтруя по источникам: World Bank Open Data и ILOSTAT.
Примеры датасетов:
- набор данных Всемирного банка
- набор данных Международной организации труда
#opendata #dateno #search #datasets #statistics
🔥7
Я совсем недавно писал про реестр каталогов Dateno и о применении ИИ к его обогащению. Сейчас могу сказать что реестр существенно обновился, его можно увидеть там же на dateno.io/registry и теперь почти у всех записей там есть сведения о наименовании каталога, его описанию, тематикам, а также у каталогов региональных властей и городов есть геопривязка на уровне кода ISO 3166-2 (субрегионы) по классификации ISO и ещё многое другое. Всё остальное можно постепенно или быстро доделать вручную
Реестр можно всегда посмотреть как датасет в JSONl и Parquet форматах
Хорошая новость - облачные ИИ агенты, с некоторыми плясками с бубном, хорошо справляются с нахождением разных метаданных связанных с сайтами.
А вот то с чем ИИ агенты справляются пока что посредственно - это то что можно отнести к data discovery. Например, откуда я первоначально находил порталы открытых данных? Через анализ сотен миллионов ссылок в Common Crawl где порталы с данными, геопорталы и тд. находились по определённым шаблонам ссылок, типа если в ссылке есть /rest/services то это скорее всего ArcGIS REST Services. А если /geoserver/web то экземпляр GeoServer и так далее. Таких типовых шаблонов пара десятков и вместе с автоматизированным ПО по идентификации API выявлялось довольно много всего.
Плюс к этому подборки списков сайтов на сайтах их разработчиков, плюс каталоги источников, например, научных репозиториев и так далее.
Всё это значительно глубже чем то куда заглядывают облачные ИИ. Уж очень специализированная задача, сама по себе. Кроме того многие реальные сервера с данными скрыты за интерфейсами, например, публичных геопорталов.
Но есть и другая сторона, тот же ChatGPT выдаёт очень неплохие результаты с идентификацией некоторых геопорталов и каталогов данных которых в реестре Dateno пока что нет. Пример, с каталогами данных и геопорталами Армении. Кстати ChatGPT 3o для таких задач оказывается пока эффективнее всего. Claude сильно галлюцинирует, а Gemini 2.5 даёт быстрые, но ограниченные результаты.
Важно помнить что почти все ИИ агенты используют сам Dateno как источник и существенная часть результатов повторяется с тем что у нас есть в реестре. Но не на 100% поэтому результат имеет ценность.
#dateno #ai #dataanalysis #datadiscovery
Реестр можно всегда посмотреть как датасет в JSONl и Parquet форматах
Хорошая новость - облачные ИИ агенты, с некоторыми плясками с бубном, хорошо справляются с нахождением разных метаданных связанных с сайтами.
А вот то с чем ИИ агенты справляются пока что посредственно - это то что можно отнести к data discovery. Например, откуда я первоначально находил порталы открытых данных? Через анализ сотен миллионов ссылок в Common Crawl где порталы с данными, геопорталы и тд. находились по определённым шаблонам ссылок, типа если в ссылке есть /rest/services то это скорее всего ArcGIS REST Services. А если /geoserver/web то экземпляр GeoServer и так далее. Таких типовых шаблонов пара десятков и вместе с автоматизированным ПО по идентификации API выявлялось довольно много всего.
Плюс к этому подборки списков сайтов на сайтах их разработчиков, плюс каталоги источников, например, научных репозиториев и так далее.
Всё это значительно глубже чем то куда заглядывают облачные ИИ. Уж очень специализированная задача, сама по себе. Кроме того многие реальные сервера с данными скрыты за интерфейсами, например, публичных геопорталов.
Но есть и другая сторона, тот же ChatGPT выдаёт очень неплохие результаты с идентификацией некоторых геопорталов и каталогов данных которых в реестре Dateno пока что нет. Пример, с каталогами данных и геопорталами Армении. Кстати ChatGPT 3o для таких задач оказывается пока эффективнее всего. Claude сильно галлюцинирует, а Gemini 2.5 даёт быстрые, но ограниченные результаты.
Важно помнить что почти все ИИ агенты используют сам Dateno как источник и существенная часть результатов повторяется с тем что у нас есть в реестре. Но не на 100% поэтому результат имеет ценность.
#dateno #ai #dataanalysis #datadiscovery
1👍8
Я тут регулярно пишу про Dateno наш поисковик по открытым и иным общедоступным данным, у нас там сейчас уже более 22 миллионов датасетов, слоёв карт и временных рядов и мы работаем над расширением объёма. Однако есть и другой фронт работы - повышение удобства для пользователей. В моём изначальном видении пользователи хотят API (в самом деле ну какие пользователи не хотят API, лично я всегда использую API когда есть возможность). Сейчас наш основной API - это упрощённый поиск, им можно пользоваться чтобы находить данные и получив карточку записи выкачивать ресурсы.
Сейчас мы проектируем вторую версию API которое бы позволяло гораздо больше, в частности:
1. Предоставление MCP сервера для пользователей которые хотят подключить ИИ
2. Предоставление информации о всех срезах в базе данных (aggregations) для повышения удобства поиска.
3. Отдельный эндпоинт по выгрузке архивных данных
4. У нас есть отдельная база статистических индикаторов и временных рядов, с дополнительной навигацией и метаданными. Возможно расширенное API для доступа к именно к статистической базе данных. Она большая это, не просто индекс метаданных, но и сами данные
5. Расширенное API для поиска с продвинутым языком запросов (внутри Elastic, можно дать возможность делать запросы с языком запросов CQL)
Идей много, вопрос в том что нужно пользователям. Если Вы пользуетесь Dateno, и чего-то не хватает в API, напишите мне, мы обязательно учтём это при проектировании, а если не пользуетесь потому что чего-то не хватает, то тем более!
#dateno #opendata #datasearch #api
Сейчас мы проектируем вторую версию API которое бы позволяло гораздо больше, в частности:
1. Предоставление MCP сервера для пользователей которые хотят подключить ИИ
2. Предоставление информации о всех срезах в базе данных (aggregations) для повышения удобства поиска.
3. Отдельный эндпоинт по выгрузке архивных данных
4. У нас есть отдельная база статистических индикаторов и временных рядов, с дополнительной навигацией и метаданными. Возможно расширенное API для доступа к именно к статистической базе данных. Она большая это, не просто индекс метаданных, но и сами данные
5. Расширенное API для поиска с продвинутым языком запросов (внутри Elastic, можно дать возможность делать запросы с языком запросов CQL)
Идей много, вопрос в том что нужно пользователям. Если Вы пользуетесь Dateno, и чего-то не хватает в API, напишите мне, мы обязательно учтём это при проектировании, а если не пользуетесь потому что чего-то не хватает, то тем более!
#dateno #opendata #datasearch #api
Dateno
Dateno - datasets search engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.
🔥10❤2
В рубрике как это устроено у них, согласно реестру Dateno в Великобритании не менее 174 каталогов данных создано университетами и другими исследовательскими центрами для публикации исследовательских данных. Большинство из них используют для этого сервис Figshare и такие продукты как Elsvier Pure и ePrints. В большинстве случаев публикация данных сочетается с раскрытием других результатов научной деятельности: статьями, изображениями, приложениями к статьям, книгами и так далее.
Это больше чем общее число каталогов данных во многих странах. Пока лишь малая их часть, 13 каталогов индексируется в Dateno где собрано чуть менее 140 тысяч наборов данных поскольку значительная часть этих каталогов не предоставляют простых интерфейсов для индексирования данных. Figshare - это коммерческий провайдер, а многие другие каталоги поддерживают только стандарт OAI-PHM имеющий существенные ограничения, он не позволяет индексировать записи определённого типа (dataset) и не даёт простой возможности индексации ресурсов (файлов) связанных с наборами данных.
Это не является ограничением для таких агрегаторов как OpenAIRE поскольку они собирают все результаты научной деятельности, но ограничивает Dateno индексация в котором ограничена только наборами данных.
Второй важный фактор - это то что в последние годы многие научные данные загружаются сразу в облачные сервисы вроде data.mendeley.com или zenodo.org, а в институциональных репозиториях указаны лишь ссылки на них и, опять же, отсутствуют ссылки на файлы, остаются только ссылки на карточки датасетов в других ресурсах.
Однако даже при этом цифры в Dateno сопоставимы с индексом OpenAIRE где к Великобритании отнесены 168 тысяч наборов данных, но и среди них многое что помечено как "Dataset" там является просто цифровыми объектами отличающимися от научных статей, например, фотографии и презентации.
Можно было бы OpenAIRE использовать как референсный ориентир при индексировании наборов данных, но и он, увы, сильно неполон.
По моим оценкам всего в Великобритании от 300 до 500 тысяч исследовательских наборов данных рассеянных по сотням репозиториям научных данных и облачным сервисам. Постепенно они будут проиндексированы в Dateno, а пока можно констатировать что индексировать каталоги открытых данных и базы статистики гораздо проще в плане количества проиндексированных наборов данных.
#thoughts #dateno #datasets
Это больше чем общее число каталогов данных во многих странах. Пока лишь малая их часть, 13 каталогов индексируется в Dateno где собрано чуть менее 140 тысяч наборов данных поскольку значительная часть этих каталогов не предоставляют простых интерфейсов для индексирования данных. Figshare - это коммерческий провайдер, а многие другие каталоги поддерживают только стандарт OAI-PHM имеющий существенные ограничения, он не позволяет индексировать записи определённого типа (dataset) и не даёт простой возможности индексации ресурсов (файлов) связанных с наборами данных.
Это не является ограничением для таких агрегаторов как OpenAIRE поскольку они собирают все результаты научной деятельности, но ограничивает Dateno индексация в котором ограничена только наборами данных.
Второй важный фактор - это то что в последние годы многие научные данные загружаются сразу в облачные сервисы вроде data.mendeley.com или zenodo.org, а в институциональных репозиториях указаны лишь ссылки на них и, опять же, отсутствуют ссылки на файлы, остаются только ссылки на карточки датасетов в других ресурсах.
Однако даже при этом цифры в Dateno сопоставимы с индексом OpenAIRE где к Великобритании отнесены 168 тысяч наборов данных, но и среди них многое что помечено как "Dataset" там является просто цифровыми объектами отличающимися от научных статей, например, фотографии и презентации.
Можно было бы OpenAIRE использовать как референсный ориентир при индексировании наборов данных, но и он, увы, сильно неполон.
По моим оценкам всего в Великобритании от 300 до 500 тысяч исследовательских наборов данных рассеянных по сотням репозиториям научных данных и облачным сервисам. Постепенно они будут проиндексированы в Dateno, а пока можно констатировать что индексировать каталоги открытых данных и базы статистики гораздо проще в плане количества проиндексированных наборов данных.
#thoughts #dateno #datasets
✍3👌3
💡 Чем интересен Dateno?
Это поисковик по открытым данным, который собирает не только метаданные о датасетах и API, но и ссылки на связанные ресурсы, часть из которых даже архивирует. Это позволяет не только искать данные, но и анализировать, как они публикуются и в каких форматах.
📊 Немного цифр:
На июль 2025 года в Dateno собрано 5 961 849 наборов данных из порталов открытых данных. Это примерно 27% от всех датасетов, слоёв карт и временных рядов, которые агрегируются из разных каталогов и геопорталов.
👀 Что внутри этих датасетов?
У одних нет вообще никаких файлов, у других — сотни вложений. Поэтому корректнее считать не сами датасеты, а количество ресурсов (файлов и ссылок). Их в базе уже 6,7 млн — примерно 1.1 ресурса на один датасет.
📥 Форматы ресурсов:
CSV — 1 008 646 (15%)
XLSX — 525 329 (7.8%)
XML — 522 501 (7.8%)
JSON — 509 668 (7.6%)
ZIP — 496 709 (7.4%)
PDF — 487 189 (7.3%)
HTML — 475 377 (7.1%)
WMS — 320 159 (4.8%)
NC — 233 229 (3.5%)
XLS — 185 855 (2.8%)
WCS — 141 472 (2.1%)
KML — 122 781 (1.8%)
DOCX — 115 723 (1.7%)
📌 CSV — безусловный лидер. Также популярны XLSX, XML, JSON, старый добрый XLS. Геоформаты вроде WMS, WCS, KML встречаются реже, но их роль растёт.
📄 Почему столько PDF, DOCX и HTML?
Часто вместо машиночитаемых данных публикуют отчёты или ссылки на внешние сайты. Иногда приходится буквально вытаскивать данные из PDF-документов.
🤖 А что с форматами для data science?
Формат Parquet, популярный в дата-инженерии и аналитике, встречается крайне редко — всего 1652 файла (меньше 0.025% всех ресурсов!). Печально, но открытые данные пока ещё далеки от удобства для дата-сайентистов.
Хочется верить, что это изменится.
#данные #opendata #dateno #datascience #dataengineering
Это поисковик по открытым данным, который собирает не только метаданные о датасетах и API, но и ссылки на связанные ресурсы, часть из которых даже архивирует. Это позволяет не только искать данные, но и анализировать, как они публикуются и в каких форматах.
📊 Немного цифр:
На июль 2025 года в Dateno собрано 5 961 849 наборов данных из порталов открытых данных. Это примерно 27% от всех датасетов, слоёв карт и временных рядов, которые агрегируются из разных каталогов и геопорталов.
👀 Что внутри этих датасетов?
У одних нет вообще никаких файлов, у других — сотни вложений. Поэтому корректнее считать не сами датасеты, а количество ресурсов (файлов и ссылок). Их в базе уже 6,7 млн — примерно 1.1 ресурса на один датасет.
📥 Форматы ресурсов:
CSV — 1 008 646 (15%)
XLSX — 525 329 (7.8%)
XML — 522 501 (7.8%)
JSON — 509 668 (7.6%)
ZIP — 496 709 (7.4%)
PDF — 487 189 (7.3%)
HTML — 475 377 (7.1%)
WMS — 320 159 (4.8%)
NC — 233 229 (3.5%)
XLS — 185 855 (2.8%)
WCS — 141 472 (2.1%)
KML — 122 781 (1.8%)
DOCX — 115 723 (1.7%)
📌 CSV — безусловный лидер. Также популярны XLSX, XML, JSON, старый добрый XLS. Геоформаты вроде WMS, WCS, KML встречаются реже, но их роль растёт.
📄 Почему столько PDF, DOCX и HTML?
Часто вместо машиночитаемых данных публикуют отчёты или ссылки на внешние сайты. Иногда приходится буквально вытаскивать данные из PDF-документов.
🤖 А что с форматами для data science?
Формат Parquet, популярный в дата-инженерии и аналитике, встречается крайне редко — всего 1652 файла (меньше 0.025% всех ресурсов!). Печально, но открытые данные пока ещё далеки от удобства для дата-сайентистов.
Хочется верить, что это изменится.
#данные #opendata #dateno #datascience #dataengineering
Dateno
Dateno - datasets search engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.
🔥7✍5
По опыту использования множества LLM'ок для работы с данными могу сказать что есть важный компонент работы который сейчас в них отсутствует - это использование прокси/VPN для доступа к некоторым ресурсам. По умолчанию LLM в режиме поиска обращаются к ресурсам с адресов относящихся к крупным облачным провайдерам вроде AWS/Azure/GCP. В результате при попытке анализировать материалы которые имеют региональную блокировку они не срабатывают. Я это наблюдаю на многих ресурсах относящихся к России, Китаю, Вьетнаму и ряду других стран. Попытки анализировать веб-сайты, например, анализа ПО на которых они созданы или поиска недокументированных API, срабатывают не всегда.
Это вполне реальное ограничение которое сейчас обходится указанием ИИ агенту использовать прокси для обхода и некоторые агенты умеют найти нужное бесплатное прокси или надо создать/приобрести прокси сервер для обхода ограничений.
Геоблокировки - это серьёзный вызов для подобной аналитической работы с помощью ИИ агентов, нужны решения которые помогали бы их обойти.
#thoughts #dateno #ai
Это вполне реальное ограничение которое сейчас обходится указанием ИИ агенту использовать прокси для обхода и некоторые агенты умеют найти нужное бесплатное прокси или надо создать/приобрести прокси сервер для обхода ограничений.
Геоблокировки - это серьёзный вызов для подобной аналитической работы с помощью ИИ агентов, нужны решения которые помогали бы их обойти.
#thoughts #dateno #ai
💯11⚡2👍1
В качестве регулярных напоминаний в основе поисковика Dateno реестр почти всех существующих каталогов с данными. Этих каталогов много, более 10 тысяч и большая их часть - это каталоги геоданных, вторые по количеству - порталы открытых данных и далее научные репозитории, базы индикаторов и так далее.
Ценность этого репозитория не только в том что он помогает индексировать датасеты, но и в том что он позволяет понять национальным пр-вам и их уполномоченным органам какие данные можно было бы собирать на едином/центральном портале.
Кроме того этот реестр - это подсказка для тех кто ищет данные по своей стране и возможность находить, в том числе, те данные которые пока ещё не проиндексированы в Dateno.
#opendata #dateno #datasets #datadiscovery
Ценность этого репозитория не только в том что он помогает индексировать датасеты, но и в том что он позволяет понять национальным пр-вам и их уполномоченным органам какие данные можно было бы собирать на едином/центральном портале.
Кроме того этот реестр - это подсказка для тех кто ищет данные по своей стране и возможность находить, в том числе, те данные которые пока ещё не проиндексированы в Dateno.
#opendata #dateno #datasets #datadiscovery
⚡4
Я ранее писал про применение ИИ агентов для рефакторингка кода и про декларативное программирование, а теперь а теперь расскажу про декларативное создание баз данных.
Когда я только-только начинал вести список каталогов с данными в мире я делал это в в Excel файле с парой десятков колонок и сотнями записей, потом Excel стал неудобен и я перенес все в Airtable что было удобнее в течение длительного времени, там можно было настраивать разные view на одну и ту же таблицу и целенаправленно вносить новые записи с по странам или темам. С автоматизацией было не очень, зато ручная работа облегчалась.
И вот когда у меня в голове уже созрела мысль что не попробовать ли сделать поисковик по датасетам, я понял что надо перестать думать об этих данных как о таблицах (сложно перестать, конечно) и начать думать как о реестре. Для меня тогда выбор был в том чтобы:
- перенести этот реестр в СУБД и создать поверх интерфейс для редактирования. Например, загрузить в Postgres и поверх сделать быстро интерфейс с помощью Strapi или Directus'а или других no-code инструментов
- или начать смотреть на этот реестр как на код и поместить все в Github. Не так удобно для работы вручную, но хорошо автоматизируется
В итоге я пошёл вторым путем и разрезал таблицы на индивидуальные карточки дата каталогов сохраненные как YAML файлы согласно предопределенной схеме данных. Например, вот такая карточка. Эти записи можно редактировать вручную, а можно и автоматически. Можно автоматизировать обогащение метаданных, проверку API, доступность сайтов, проверку ошибок и так далее. Чтобы собственно и происходит внутри этого репозитория. От изначальный 2 тысяч каталогов до текущего их числа в более чем 10+ тысяч дата каталогов он вырос за счет автоматизированной загрузки в него большого числа дата каталогов из их агрегаторов.
Теперь я подключил последнюю версию Cursor'а к обновлению этого репозитория и оказывается он очень хорош в массовом обновлении YAML файлов и понимает команды сформулированные в стиле:
- "Проанализируй все записи, найди те у которых веб сайт владельца не указан, найди веб сайт и заполни поля owner.name и owner.link"
- "Проверь все записи относящиеся к Бельгии и проверь доступны ли указанные там сайты"
- "Создай JSON схему для YAML файлов дата каталогов и проверь все их записи на соответствие этой схеме"
и так далее.
Магия начала работать когда реестр достиг некоторой критической массы которая "помогает" ИИ агенту понимать схемы данных, предназначение репозитория и находить несоответствия. Ручная работа всё еще необходима, но для проверки сделанного, и её тоже можно автоматизировать.
Итого сейчас в обновленных данных реестра Dateno 10 905 каталогов. Они все пока в репозитории реестра в виде YAML файлов и parquet файла слепка с данными. Это на 794 каталога данных больше чем пока есть в общедоступном реестре (всего 10 111 каталогов).
Были добавлены:
- каталоги данных на базе GBIF IPT
- большие списки каталогов данных во Франции, Испании и Нидерландах
- по мелочи каталоги данных в других странах
А также огромное число исправлений в метаданных всех каталогов.
Фактически ИИ агенты для разработки прекрасно подходят для работы с данными упакованными таким образом. Я начинаю склоняться к мысли что такое обогащение данных работает лучше чем инструменты вроде OpenRefine.
Чуть позже я буду писать об этом всем лонгрид, но это уже после завершения чистки и обогащения репозитория которое уже сильно ускорилось.
#opendata #datacatalogs #dateno #dataengineering #dataanalysis
Когда я только-только начинал вести список каталогов с данными в мире я делал это в в Excel файле с парой десятков колонок и сотнями записей, потом Excel стал неудобен и я перенес все в Airtable что было удобнее в течение длительного времени, там можно было настраивать разные view на одну и ту же таблицу и целенаправленно вносить новые записи с по странам или темам. С автоматизацией было не очень, зато ручная работа облегчалась.
И вот когда у меня в голове уже созрела мысль что не попробовать ли сделать поисковик по датасетам, я понял что надо перестать думать об этих данных как о таблицах (сложно перестать, конечно) и начать думать как о реестре. Для меня тогда выбор был в том чтобы:
- перенести этот реестр в СУБД и создать поверх интерфейс для редактирования. Например, загрузить в Postgres и поверх сделать быстро интерфейс с помощью Strapi или Directus'а или других no-code инструментов
- или начать смотреть на этот реестр как на код и поместить все в Github. Не так удобно для работы вручную, но хорошо автоматизируется
В итоге я пошёл вторым путем и разрезал таблицы на индивидуальные карточки дата каталогов сохраненные как YAML файлы согласно предопределенной схеме данных. Например, вот такая карточка. Эти записи можно редактировать вручную, а можно и автоматически. Можно автоматизировать обогащение метаданных, проверку API, доступность сайтов, проверку ошибок и так далее. Чтобы собственно и происходит внутри этого репозитория. От изначальный 2 тысяч каталогов до текущего их числа в более чем 10+ тысяч дата каталогов он вырос за счет автоматизированной загрузки в него большого числа дата каталогов из их агрегаторов.
Теперь я подключил последнюю версию Cursor'а к обновлению этого репозитория и оказывается он очень хорош в массовом обновлении YAML файлов и понимает команды сформулированные в стиле:
- "Проанализируй все записи, найди те у которых веб сайт владельца не указан, найди веб сайт и заполни поля owner.name и owner.link"
- "Проверь все записи относящиеся к Бельгии и проверь доступны ли указанные там сайты"
- "Создай JSON схему для YAML файлов дата каталогов и проверь все их записи на соответствие этой схеме"
и так далее.
Магия начала работать когда реестр достиг некоторой критической массы которая "помогает" ИИ агенту понимать схемы данных, предназначение репозитория и находить несоответствия. Ручная работа всё еще необходима, но для проверки сделанного, и её тоже можно автоматизировать.
Итого сейчас в обновленных данных реестра Dateno 10 905 каталогов. Они все пока в репозитории реестра в виде YAML файлов и parquet файла слепка с данными. Это на 794 каталога данных больше чем пока есть в общедоступном реестре (всего 10 111 каталогов).
Были добавлены:
- каталоги данных на базе GBIF IPT
- большие списки каталогов данных во Франции, Испании и Нидерландах
- по мелочи каталоги данных в других странах
А также огромное число исправлений в метаданных всех каталогов.
Фактически ИИ агенты для разработки прекрасно подходят для работы с данными упакованными таким образом. Я начинаю склоняться к мысли что такое обогащение данных работает лучше чем инструменты вроде OpenRefine.
Чуть позже я буду писать об этом всем лонгрид, но это уже после завершения чистки и обогащения репозитория которое уже сильно ускорилось.
#opendata #datacatalogs #dateno #dataengineering #dataanalysis
GitHub
dataportals-registry/data/entities/AE/Federal/opendata/databayanatae.yaml at main · commondataio/dataportals-registry
Registry of data portals, catalogs, data repositories including data catalogs dataset and catalog description standard - commondataio/dataportals-registry
✍7🔥4👍2❤1
Forwarded from Dateno
🚀 Major Update of the Dateno Data Catalog Registry
The Dateno Registry — an open-source & open-data catalog of (almost) *all* data portals worldwide — just got a huge upgrade.
It powers the Dateno search engine, which now indexes 22M+ datasets.
🔍 Key Additions
• 1,993 new data catalog records
• 1,515 ArcGIS Server instances — massive geoportal expansion
• 293 global-level catalogs
• 97 French data catalogs
🌍 Geospatial Infrastructure
• 83 GeoServer
• 37 GeoNode
• 33 GeoNetwork
• 8 Lizmap
• 3 MapProxy
• 2 MapBender
📊 Open Data Platforms
• 47 OpenDataSoft
• 42 CKAN
• 5 DKAN
🔬 Scientific Repositories
• 38 Figshare
• 6 DSpace
• 6 NADA
• 9 THREDDS
🛠 Improvements
• 363 records with improved metadata
• Updated API endpoints for IPT catalogs
• Better metadata completeness
• Improved geographic & administrative coverage
🔗 More Info
🌐 Dateno Registry: https://dateno.io/registry
💾 Open-source data: https://github.com/commondataio/dataportals-registry
📦 Full dataset (parquet): https://github.com/commondataio/dataportals-registry/blob/main/data/datasets/full.parquet
#dateno #opendata #datacatalogs #opensource
The Dateno Registry — an open-source & open-data catalog of (almost) *all* data portals worldwide — just got a huge upgrade.
It powers the Dateno search engine, which now indexes 22M+ datasets.
🔍 Key Additions
• 1,993 new data catalog records
• 1,515 ArcGIS Server instances — massive geoportal expansion
• 293 global-level catalogs
• 97 French data catalogs
🌍 Geospatial Infrastructure
• 83 GeoServer
• 37 GeoNode
• 33 GeoNetwork
• 8 Lizmap
• 3 MapProxy
• 2 MapBender
📊 Open Data Platforms
• 47 OpenDataSoft
• 42 CKAN
• 5 DKAN
🔬 Scientific Repositories
• 38 Figshare
• 6 DSpace
• 6 NADA
• 9 THREDDS
🛠 Improvements
• 363 records with improved metadata
• Updated API endpoints for IPT catalogs
• Better metadata completeness
• Improved geographic & administrative coverage
🔗 More Info
🌐 Dateno Registry: https://dateno.io/registry
💾 Open-source data: https://github.com/commondataio/dataportals-registry
📦 Full dataset (parquet): https://github.com/commondataio/dataportals-registry/blob/main/data/datasets/full.parquet
#dateno #opendata #datacatalogs #opensource
Dateno
Dateno Registry and Dataset Search Engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.
👍5❤1
В качестве примера данных создаваемых и улучшаемых с помощью ИИ, публикую открытым кодом и открытыми данными Internacia Datasets (Internacia - это международный на эсператно).
В репозитории находятся наборы данных в форматах JSONl, YAML, Parquet и база DuckDB в которых содержатся данные о 252 странах и 727 группах стран и межгосударственных организациях. Там же подробности про содержание и структуру базы, примеры доступа и другие подробности.
Эти наборы данных собираются из большого числа YAML файлов из папок data/countries и data/intblocks. В свою очередь эти YAML файлы вручную или автоматизированно обновляются. В частности чтобы собрать эту базу я взял свою базу межгосударственных организаций 5-летней давности, поправил вручную самое критичное и привел в порядок с помощью ИИ агентов Antigravity и Cursor, после чего снова поправил и в итоге собрал имеющиеся записи в наборы данных.
В Dateno сейчас частично используются часть этой логики используется для мэппинга датасетов на страны, но после завершения SDK для Python'а оно заменит применяемую сейчас библиотеку pycountry на использование этого справочника. а заодно даст возможность, при желании, обогащать датасеты дополнительными фильтрами и метаданными по привязкам к геоблокам, например, отфильтровывая датасеты только из стран Евросоюза или стран БРИКС или стран Лиги арабских государств.
Сейчас идет активный рефакторинг части кода Dateno, так что этот компонент будет там использоваться.
А, в целом, у него много применений. Самое очевидное про которое я все время говорю - это региональные блоковые рейтинги. Хочется сделать рейтинг стран по открытости внутри политических блоков? Без проблем. Хочется отрейтинговать страны ОЭСР по ВВП? Тоже несложно. И многое и многое другое, это справочник, упакованный в современные форматы.
Источники датасета: собственная база, Wikipedia, Wikidata, сайты межгосударственных организаций, реестры стран ООН и Всемирного банка.
Важная особенность в том что в перечне стран есть не только те что являются членами ООН, но и суверенные территории и непризнанные государства. Поэтому их 252, в основе был справочник Всемирного Банка, а он включает многие суверенные территории не являющиеся членами ООН.
Дальнейшее развитие:
1. SDK для Python
2. REST API возможно вместе с другими похожими справочными данными
3. Расширение на субрегиональный уровень по кодам ISO3166-2 (точно не первый приоритет)
4. Исправление ошибок и дополнения метаданных
#opendata #opensource #dateno #datasets
В репозитории находятся наборы данных в форматах JSONl, YAML, Parquet и база DuckDB в которых содержатся данные о 252 странах и 727 группах стран и межгосударственных организациях. Там же подробности про содержание и структуру базы, примеры доступа и другие подробности.
Эти наборы данных собираются из большого числа YAML файлов из папок data/countries и data/intblocks. В свою очередь эти YAML файлы вручную или автоматизированно обновляются. В частности чтобы собрать эту базу я взял свою базу межгосударственных организаций 5-летней давности, поправил вручную самое критичное и привел в порядок с помощью ИИ агентов Antigravity и Cursor, после чего снова поправил и в итоге собрал имеющиеся записи в наборы данных.
В Dateno сейчас частично используются часть этой логики используется для мэппинга датасетов на страны, но после завершения SDK для Python'а оно заменит применяемую сейчас библиотеку pycountry на использование этого справочника. а заодно даст возможность, при желании, обогащать датасеты дополнительными фильтрами и метаданными по привязкам к геоблокам, например, отфильтровывая датасеты только из стран Евросоюза или стран БРИКС или стран Лиги арабских государств.
Сейчас идет активный рефакторинг части кода Dateno, так что этот компонент будет там использоваться.
А, в целом, у него много применений. Самое очевидное про которое я все время говорю - это региональные блоковые рейтинги. Хочется сделать рейтинг стран по открытости внутри политических блоков? Без проблем. Хочется отрейтинговать страны ОЭСР по ВВП? Тоже несложно. И многое и многое другое, это справочник, упакованный в современные форматы.
Источники датасета: собственная база, Wikipedia, Wikidata, сайты межгосударственных организаций, реестры стран ООН и Всемирного банка.
Важная особенность в том что в перечне стран есть не только те что являются членами ООН, но и суверенные территории и непризнанные государства. Поэтому их 252, в основе был справочник Всемирного Банка, а он включает многие суверенные территории не являющиеся членами ООН.
Дальнейшее развитие:
1. SDK для Python
2. REST API возможно вместе с другими похожими справочными данными
3. Расширение на субрегиональный уровень по кодам ISO3166-2 (точно не первый приоритет)
4. Исправление ошибок и дополнения метаданных
#opendata #opensource #dateno #datasets
👍7✍2❤1🔥1
Forwarded from Dateno
Open Data in Armenia: No National Data Portal - Yet
One of the most notable characteristics of Armenia’s open data landscape is the absence of a government-run national open data portal. This is especially interesting given that Armenia has been a member of the Open Government Partnership since 2011. However, the country’s transparency efforts historically focused more on public dialogue and civic participation rather than open data infrastructure.
Instead of an official portal, Armenia relies on a community-driven initiative - Open Data Armenia (data.opendata.am), which aggregates a wide range of datasets from both official national sources and international organizations.
Within the Dateno Data Catalog Registry, Armenia currently has 11 registered data catalogs (https://dateno.io/registry/country/AM/), which can be grouped as follows:
- 2 open data portals
- 6 geospatial data catalogs
- 3 statistical and microdata catalogs
Armenia’s official statistics are published via statbank.armstat.am, built on the open-source PxWeb platform. Unfortunately, this installation has not been updated for many years and does not provide a public API-unlike most modern PxWeb deployments. For this reason, the portal is not yet indexed by Dateno, unlike similar statistical portals in other countries.
At the same time, a significant amount of Armenian data is available through major international statistical platforms such as the World Bank, BIS, WHO, and others - and already indexed in Dateno.
Armenia is also home to another open data portal with a global scope: CryptoData (https://cryptodata.center/), which provides a large collection of cryptocurrency datasets. This project was also developed by the Open Data Armenia initiative.
Additional Armenian datasets can be found within the statistical systems of regional organizations where Armenia is a member - including CIS (https://new.cisstat.org) and EAEU (https://eec.eaeunion.org/comission/department/dep_stat/union_stat/) - as well as across numerous official government websites.
#opendata #armenia #Dateno
One of the most notable characteristics of Armenia’s open data landscape is the absence of a government-run national open data portal. This is especially interesting given that Armenia has been a member of the Open Government Partnership since 2011. However, the country’s transparency efforts historically focused more on public dialogue and civic participation rather than open data infrastructure.
Instead of an official portal, Armenia relies on a community-driven initiative - Open Data Armenia (data.opendata.am), which aggregates a wide range of datasets from both official national sources and international organizations.
Within the Dateno Data Catalog Registry, Armenia currently has 11 registered data catalogs (https://dateno.io/registry/country/AM/), which can be grouped as follows:
- 2 open data portals
- 6 geospatial data catalogs
- 3 statistical and microdata catalogs
Armenia’s official statistics are published via statbank.armstat.am, built on the open-source PxWeb platform. Unfortunately, this installation has not been updated for many years and does not provide a public API-unlike most modern PxWeb deployments. For this reason, the portal is not yet indexed by Dateno, unlike similar statistical portals in other countries.
At the same time, a significant amount of Armenian data is available through major international statistical platforms such as the World Bank, BIS, WHO, and others - and already indexed in Dateno.
Armenia is also home to another open data portal with a global scope: CryptoData (https://cryptodata.center/), which provides a large collection of cryptocurrency datasets. This project was also developed by the Open Data Armenia initiative.
Additional Armenian datasets can be found within the statistical systems of regional organizations where Armenia is a member - including CIS (https://new.cisstat.org) and EAEU (https://eec.eaeunion.org/comission/department/dep_stat/union_stat/) - as well as across numerous official government websites.
#opendata #armenia #Dateno
✍3
Ещё в продолжение правильного применения ИИ агентов, я системно занялся реестром каталогов данных в Dateno, я уже писал про предыдущее масштабное обновление, но это далеко не все. Основное обновление было про добавление большого числа каталогов данных. и их стало сильно больше.
А сейчас, в рамках задач по повышению качества индекса Dateno, повышение качество записей в реестре потому что при индексации датасетов часть их метаданных заполняется из записей в реестре. И здесь главное правильно сформулировать задачи ИИ агенту потому что это именно тот тип задач с которыми они справляются хорошо.
В итоге теперь в коде данных реестра появился отдельный блок dataquality в котором формируются отчеты по качеству записей. Отчеты разделены по странам, типам ошибок и критичности.
В общей сложности на 12281каталогов данных приходится 85956 ошибок, много, да? Потому что правила валидации весьма скурпулёзные и 49 тысяч из них - это проверка точек подключения к API (у одного каталога данных может быть до двух десятков таких API содержащих разные метаданные и данные).
Другие частые ошибки в отсутствии информации о лицензии каталога данных (она не всегда есть на уровне каталога, чаще лицензии указываются на уровне набора данных внутри, поэтому это корректируемое правило) и в отсутствии внешних идентификаторов у каталогов данных - это мэппинг каталогов данных на Wikidata и другие референсные источники, но тут важно знать что у большинства каталогов данных нет этих референсных источников и сам Dateno ими является.
Поэтому скурпулезность правил сейчас избыточная, в дальнейшем корректируемая, но безусловно полезная для собственного понимания что и как необходимо корректировать.
Что важно что все отчеты по качеству данных специально генерируются таким образом чтобы их можно было читать и править самостоятельно или же отдавать ИИ агенту командой примерно такого содержания "Fix issues listed in [название файла]"
А я по прежнему возвращаюсь к мысли о том что декларативная разработка справочных наборов данных и баз данных - это вполне рабочий подход достойный отдельного манифеста.
Второе направление мысли у меня по этому поводу в том что системные промпты и промпты это далеко не единственная модель взаимодействия которую могли бы предлагать среды разработки с ИИ. Я бы добавил что нехватает моделей взаимодействия которые я бы назвал сценарии и контроли. По сути есть стандартизированные цепочки промптов которые надо выполнять всегда при ручном или автоматизированном изменении кода.
Они включают:
- проверку и правку кода в части стилистика и линтинга (а ля pylint и аналоги для Python)
- подготовку и обновление тестов
- обновление документации (минимальное или весьма комплексное)
- acceptance тестирование (и другие виды тестирования при необходимости)
- сборка и релиз на Github/Gitlab/другой способ управления кодом
Многое из этого вшито в CI/CD пайплайны, но многое из этого может быть ИИ автоматизировано. Вопрос может ли это быть автоматизировано в IDE на стороне пользователя и пройти ручную финальную проверку или вынесено в CI/CD на внешнем сервисе и ручная проверка необязательна.
Мои ощущения что это скорее расширяемые модели контролируемых сценариев/строительных блоков внутри IDE с обязательными стадиями ручного контроля.
#thoughts #dateno #datacatalogs #dataquality
А сейчас, в рамках задач по повышению качества индекса Dateno, повышение качество записей в реестре потому что при индексации датасетов часть их метаданных заполняется из записей в реестре. И здесь главное правильно сформулировать задачи ИИ агенту потому что это именно тот тип задач с которыми они справляются хорошо.
В итоге теперь в коде данных реестра появился отдельный блок dataquality в котором формируются отчеты по качеству записей. Отчеты разделены по странам, типам ошибок и критичности.
В общей сложности на 12281каталогов данных приходится 85956 ошибок, много, да? Потому что правила валидации весьма скурпулёзные и 49 тысяч из них - это проверка точек подключения к API (у одного каталога данных может быть до двух десятков таких API содержащих разные метаданные и данные).
Другие частые ошибки в отсутствии информации о лицензии каталога данных (она не всегда есть на уровне каталога, чаще лицензии указываются на уровне набора данных внутри, поэтому это корректируемое правило) и в отсутствии внешних идентификаторов у каталогов данных - это мэппинг каталогов данных на Wikidata и другие референсные источники, но тут важно знать что у большинства каталогов данных нет этих референсных источников и сам Dateno ими является.
Поэтому скурпулезность правил сейчас избыточная, в дальнейшем корректируемая, но безусловно полезная для собственного понимания что и как необходимо корректировать.
Что важно что все отчеты по качеству данных специально генерируются таким образом чтобы их можно было читать и править самостоятельно или же отдавать ИИ агенту командой примерно такого содержания "Fix issues listed in [название файла]"
А я по прежнему возвращаюсь к мысли о том что декларативная разработка справочных наборов данных и баз данных - это вполне рабочий подход достойный отдельного манифеста.
Второе направление мысли у меня по этому поводу в том что системные промпты и промпты это далеко не единственная модель взаимодействия которую могли бы предлагать среды разработки с ИИ. Я бы добавил что нехватает моделей взаимодействия которые я бы назвал сценарии и контроли. По сути есть стандартизированные цепочки промптов которые надо выполнять всегда при ручном или автоматизированном изменении кода.
Они включают:
- проверку и правку кода в части стилистика и линтинга (а ля pylint и аналоги для Python)
- подготовку и обновление тестов
- обновление документации (минимальное или весьма комплексное)
- acceptance тестирование (и другие виды тестирования при необходимости)
- сборка и релиз на Github/Gitlab/другой способ управления кодом
Многое из этого вшито в CI/CD пайплайны, но многое из этого может быть ИИ автоматизировано. Вопрос может ли это быть автоматизировано в IDE на стороне пользователя и пройти ручную финальную проверку или вынесено в CI/CD на внешнем сервисе и ручная проверка необязательна.
Мои ощущения что это скорее расширяемые модели контролируемых сценариев/строительных блоков внутри IDE с обязательными стадиями ручного контроля.
#thoughts #dateno #datacatalogs #dataquality
🔥6⚡2❤1👍1😁1