Foursquare официально анонсировали [1] SQLRooms [2]. Это инструмент для построения дашбордов в основе которого DuckDB и интегрированный AI ассистент.
Можно вживую его посмотреть в интерфейсе куда можно загрузить данные и посмотреть запросы к ним [3] и в демо AI аналитика [4]
Про SQLRooms я ранее писал, но теперь он анонсирован официально и я так понимаю что весьма активно развивается.
А ещё они следуют ровно той концепции о которой я ранее писал - Local-first [5]
Ссылки:
[1] https://medium.com/@foursquare/foursquare-introduces-sqlrooms-b6397d53546c
[2] https://sqlrooms.org
[3] https://query.sqlrooms.org/
[4] https://sqlrooms-ai.netlify.app/
[5] https://github.com/sqlrooms/sqlrooms
#opensource #dataanalytics #dataengineering #duckdb
Можно вживую его посмотреть в интерфейсе куда можно загрузить данные и посмотреть запросы к ним [3] и в демо AI аналитика [4]
Про SQLRooms я ранее писал, но теперь он анонсирован официально и я так понимаю что весьма активно развивается.
А ещё они следуют ровно той концепции о которой я ранее писал - Local-first [5]
Ссылки:
[1] https://medium.com/@foursquare/foursquare-introduces-sqlrooms-b6397d53546c
[2] https://sqlrooms.org
[3] https://query.sqlrooms.org/
[4] https://sqlrooms-ai.netlify.app/
[5] https://github.com/sqlrooms/sqlrooms
#opensource #dataanalytics #dataengineering #duckdb
❤9👍3
DataChain [1] хранилище для AI датасетов с неструктурированными данными вроде изображений, видео, аудио, документов. Открытый код, лицензия Apache 2.0, стремительно набирает пользовательскую базу. Опубликовано одноимённым стартапом. Для хранения используют S3, какой-то отдельный язык запросов я не увидел.
За проектом стоит команда которая делала аналог Git'а для данных DVC, а то есть проблематику они должны понимать хорошо.
В коммерческом сервисе обещают всякие ништяки вроде каталога данных, прослеживаемость данных, интерфейс просмотра мультимодальных данных и тд. Но это то на что интересно посмотреть, а так то может быть применение и только open source продукту.
Ссылки:
[1] https://github.com/iterative/datachain
#opensource #dataengineering
За проектом стоит команда которая делала аналог Git'а для данных DVC, а то есть проблематику они должны понимать хорошо.
В коммерческом сервисе обещают всякие ништяки вроде каталога данных, прослеживаемость данных, интерфейс просмотра мультимодальных данных и тд. Но это то на что интересно посмотреть, а так то может быть применение и только open source продукту.
Ссылки:
[1] https://github.com/iterative/datachain
#opensource #dataengineering
GitHub
GitHub - datachain-ai/datachain: Analytics, Versioning and ETL for multimodal data: video, audio, PDFs, images
Analytics, Versioning and ETL for multimodal data: video, audio, PDFs, images - datachain-ai/datachain
⚡5❤3
Свежий любопытный редактор кода и данных NAO [1] профинансирован Y Combinator, предлагают аналог VSCode со встроенным AI ассистентом заточенным под данные, помогает строить пайплайны, разбирает SQL запросы, позволяет делать с данными и запросами к ним всякое. Позиционируется как Cursor для данных и заточенность под SQL.
Из минусов, поддерживает только облачные базы данных и Postgres, не имеет никакой поддержки NoSQL. Из плюсов, тем кто работает с SQL может пригодится.
Ссылки:
[1] https://getnao.io
#dataanalytics #dataengineering
Из минусов, поддерживает только облачные базы данных и Postgres, не имеет никакой поддержки NoSQL. Из плюсов, тем кто работает с SQL может пригодится.
Ссылки:
[1] https://getnao.io
#dataanalytics #dataengineering
👍9❤🔥3
Полезные ссылки про данные, технологии и не только:
- Why Parquet Is the Go-To Format for Data Engineers про формат Parquet, его особенности и трюки/оптимизации при работе с этими файлами. Полезно для тех кто про формат уже слышал, но почти не использовал.
- Data.gouv.fr High-value datasets свежая страница на французском национальном портале открытых данных с наборами данных высокой ценности (в терминах регулирования Евросоюза).
- Data Paper Index (China) - каталог статей на данных (data papers) из более чем 2,2 тысяч статей в 100 научных журналах и связанные с 11 научными репозиториями. Основные темы: окружающая среда, науки о земле. напомню что data papers - это вид научных статей опубликованных вокруг одного или нескольких наборов данных.
#opendata #datasets #dataengineering
- Why Parquet Is the Go-To Format for Data Engineers про формат Parquet, его особенности и трюки/оптимизации при работе с этими файлами. Полезно для тех кто про формат уже слышал, но почти не использовал.
- Data.gouv.fr High-value datasets свежая страница на французском национальном портале открытых данных с наборами данных высокой ценности (в терминах регулирования Евросоюза).
- Data Paper Index (China) - каталог статей на данных (data papers) из более чем 2,2 тысяч статей в 100 научных журналах и связанные с 11 научными репозиториями. Основные темы: окружающая среда, науки о земле. напомню что data papers - это вид научных статей опубликованных вокруг одного или нескольких наборов данных.
#opendata #datasets #dataengineering
Substack
Why Parquet Is the Go-To Format for Data Engineers
With more practical lessons to help you with the data engineering journey
✍4🔥3
Тренды и мысли по поводу данных и ИИ. Собрал в кучу размышления последних недель:
1. Почти все LLM умеют в анализ текстовых и легко преобразуемых в тексты данных и документов и совсем почти не умеют в бинарное, например, разобрать какой-нибудь geopackage или 3D модель или файлы parquet. Интересно появятся ли сервисы умеющие такое или надо делать своё уже?
2. MCP протокол внедряется повсеместно включая сервисы которые предлагают быстрое создание MCP на базе API. При том что MCP выглядит кривым-косым и неправильным архитектурно. Нужны и другие интерфейсы к API и к данным. Причём для данных MCP кажется особенно кривым инструментом. Но тренд явный и нарастающий
3. Корп каталоги данных по прежнему актуальны для задач комплаенса и для организации работы инженеров и data scientist'ов когда есть условно от 5 дата команд и более, но в целом это уже сложившийся и постепенно отмирающий, не развивающийся рынок.
4. Нет сервисов дата документации, не считая Castor'а который купили Coalesce. Сервисы документирования API есть, создания документации к интерфейсам есть, а дата документации автоматизированной нет.
5. Ведущие ИИ агенты хорошо анализируют Excel файлы, и PDF файлы, файлы MS Word, но не дают потокового API для этих задач.
6. Как интегрировать веб-архивацию и LLMки сейчас? Сделать универсальный MCP интерфейс к WARC файлам? Рынка здесь нет, польза может быть.
7. DuckDB массово используется как ядро для огромного числа продуктов, коммерческих, открытых, некоммерческих и тд. Хочешь сделать инструмент для манипуляции данными? DuckDB самый очевидный ответ, альтернативы Polars или Clickhouse
#thoughts #data #dataengineering
1. Почти все LLM умеют в анализ текстовых и легко преобразуемых в тексты данных и документов и совсем почти не умеют в бинарное, например, разобрать какой-нибудь geopackage или 3D модель или файлы parquet. Интересно появятся ли сервисы умеющие такое или надо делать своё уже?
2. MCP протокол внедряется повсеместно включая сервисы которые предлагают быстрое создание MCP на базе API. При том что MCP выглядит кривым-косым и неправильным архитектурно. Нужны и другие интерфейсы к API и к данным. Причём для данных MCP кажется особенно кривым инструментом. Но тренд явный и нарастающий
3. Корп каталоги данных по прежнему актуальны для задач комплаенса и для организации работы инженеров и data scientist'ов когда есть условно от 5 дата команд и более, но в целом это уже сложившийся и постепенно отмирающий, не развивающийся рынок.
4. Нет сервисов дата документации, не считая Castor'а который купили Coalesce. Сервисы документирования API есть, создания документации к интерфейсам есть, а дата документации автоматизированной нет.
5. Ведущие ИИ агенты хорошо анализируют Excel файлы, и PDF файлы, файлы MS Word, но не дают потокового API для этих задач.
6. Как интегрировать веб-архивацию и LLMки сейчас? Сделать универсальный MCP интерфейс к WARC файлам? Рынка здесь нет, польза может быть.
7. DuckDB массово используется как ядро для огромного числа продуктов, коммерческих, открытых, некоммерческих и тд. Хочешь сделать инструмент для манипуляции данными? DuckDB самый очевидный ответ, альтернативы Polars или Clickhouse
#thoughts #data #dataengineering
⚡7✍5👍4
Полезные ссылки про данные, технологии и не только:
- Software engineering with LLMs in 2025: reality check про применение LLM в программной инженерии. Неплохой обзор текущего состояния, понятным языком и про ключевые тренды.
- 9 Trends Shaping the Future of Data Management in 2025 обзор трендов в управлении данными в 2025 году. Надо тут оговорится что речь про рынок США, что сам обзор от коммерческой компании продающей SaaS сервис по контролю качества данных, а в остальном полезный обзор. Всё вполне очевидно: AI, real time data, self-service BI и тд.
- Iceberg, The Right Idea - The Wrong Spec - Part 1 of 2: History обзор истории спецификации Apache Iceberg. Полезно почитать перед тем как использовать
- DuckLake 0.2 обновление стандарта/спецификации озера данных на базе DuckDB. Слежу за этим внимательно, выглядит даже перспективнее чем Iceberg
- Why AI hardware needs to be open почему бы оборудованию для ИИ не быть открытым? Идеологически мне нравится, но нужен какой-то другой глобус чтобы это стало правдой
- Introducing pay per crawl: enabling content owners to charge AI crawlers for access владельцы сайтов теперь могут требовать оплату за краулинг их ресурсов.
#dataengineering #dataanalytics #ai #duckdb
- Software engineering with LLMs in 2025: reality check про применение LLM в программной инженерии. Неплохой обзор текущего состояния, понятным языком и про ключевые тренды.
- 9 Trends Shaping the Future of Data Management in 2025 обзор трендов в управлении данными в 2025 году. Надо тут оговорится что речь про рынок США, что сам обзор от коммерческой компании продающей SaaS сервис по контролю качества данных, а в остальном полезный обзор. Всё вполне очевидно: AI, real time data, self-service BI и тд.
- Iceberg, The Right Idea - The Wrong Spec - Part 1 of 2: History обзор истории спецификации Apache Iceberg. Полезно почитать перед тем как использовать
- DuckLake 0.2 обновление стандарта/спецификации озера данных на базе DuckDB. Слежу за этим внимательно, выглядит даже перспективнее чем Iceberg
- Why AI hardware needs to be open почему бы оборудованию для ИИ не быть открытым? Идеологически мне нравится, но нужен какой-то другой глобус чтобы это стало правдой
- Introducing pay per crawl: enabling content owners to charge AI crawlers for access владельцы сайтов теперь могут требовать оплату за краулинг их ресурсов.
#dataengineering #dataanalytics #ai #duckdb
✍5❤2👍1
💡 Чем интересен Dateno?
Это поисковик по открытым данным, который собирает не только метаданные о датасетах и API, но и ссылки на связанные ресурсы, часть из которых даже архивирует. Это позволяет не только искать данные, но и анализировать, как они публикуются и в каких форматах.
📊 Немного цифр:
На июль 2025 года в Dateno собрано 5 961 849 наборов данных из порталов открытых данных. Это примерно 27% от всех датасетов, слоёв карт и временных рядов, которые агрегируются из разных каталогов и геопорталов.
👀 Что внутри этих датасетов?
У одних нет вообще никаких файлов, у других — сотни вложений. Поэтому корректнее считать не сами датасеты, а количество ресурсов (файлов и ссылок). Их в базе уже 6,7 млн — примерно 1.1 ресурса на один датасет.
📥 Форматы ресурсов:
CSV — 1 008 646 (15%)
XLSX — 525 329 (7.8%)
XML — 522 501 (7.8%)
JSON — 509 668 (7.6%)
ZIP — 496 709 (7.4%)
PDF — 487 189 (7.3%)
HTML — 475 377 (7.1%)
WMS — 320 159 (4.8%)
NC — 233 229 (3.5%)
XLS — 185 855 (2.8%)
WCS — 141 472 (2.1%)
KML — 122 781 (1.8%)
DOCX — 115 723 (1.7%)
📌 CSV — безусловный лидер. Также популярны XLSX, XML, JSON, старый добрый XLS. Геоформаты вроде WMS, WCS, KML встречаются реже, но их роль растёт.
📄 Почему столько PDF, DOCX и HTML?
Часто вместо машиночитаемых данных публикуют отчёты или ссылки на внешние сайты. Иногда приходится буквально вытаскивать данные из PDF-документов.
🤖 А что с форматами для data science?
Формат Parquet, популярный в дата-инженерии и аналитике, встречается крайне редко — всего 1652 файла (меньше 0.025% всех ресурсов!). Печально, но открытые данные пока ещё далеки от удобства для дата-сайентистов.
Хочется верить, что это изменится.
#данные #opendata #dateno #datascience #dataengineering
Это поисковик по открытым данным, который собирает не только метаданные о датасетах и API, но и ссылки на связанные ресурсы, часть из которых даже архивирует. Это позволяет не только искать данные, но и анализировать, как они публикуются и в каких форматах.
📊 Немного цифр:
На июль 2025 года в Dateno собрано 5 961 849 наборов данных из порталов открытых данных. Это примерно 27% от всех датасетов, слоёв карт и временных рядов, которые агрегируются из разных каталогов и геопорталов.
👀 Что внутри этих датасетов?
У одних нет вообще никаких файлов, у других — сотни вложений. Поэтому корректнее считать не сами датасеты, а количество ресурсов (файлов и ссылок). Их в базе уже 6,7 млн — примерно 1.1 ресурса на один датасет.
📥 Форматы ресурсов:
CSV — 1 008 646 (15%)
XLSX — 525 329 (7.8%)
XML — 522 501 (7.8%)
JSON — 509 668 (7.6%)
ZIP — 496 709 (7.4%)
PDF — 487 189 (7.3%)
HTML — 475 377 (7.1%)
WMS — 320 159 (4.8%)
NC — 233 229 (3.5%)
XLS — 185 855 (2.8%)
WCS — 141 472 (2.1%)
KML — 122 781 (1.8%)
DOCX — 115 723 (1.7%)
📌 CSV — безусловный лидер. Также популярны XLSX, XML, JSON, старый добрый XLS. Геоформаты вроде WMS, WCS, KML встречаются реже, но их роль растёт.
📄 Почему столько PDF, DOCX и HTML?
Часто вместо машиночитаемых данных публикуют отчёты или ссылки на внешние сайты. Иногда приходится буквально вытаскивать данные из PDF-документов.
🤖 А что с форматами для data science?
Формат Parquet, популярный в дата-инженерии и аналитике, встречается крайне редко — всего 1652 файла (меньше 0.025% всех ресурсов!). Печально, но открытые данные пока ещё далеки от удобства для дата-сайентистов.
Хочется верить, что это изменится.
#данные #opendata #dateno #datascience #dataengineering
Dateno
Dateno - datasets search engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.
🔥7✍5
Новый инструмент Vanna для Text-to-SQL операций. Под MIT лицензией, обучается на данных, а потом позволяет делать SQL запросы текстовым промптом. Поддерживает множество облачных и локальных векторных хранилищ, больших языковых моделей и баз данных.
Выглядит интересным со всех сторон: лицензия, возможности и тд.
До идеала нехватает ещё поддержки синтаксиса NoSQL (Elasticserch, MongoDB и др.)
Надо пробовать на практике.
#opensource #ai #dataengineering #datatools #dataanalytics
Выглядит интересным со всех сторон: лицензия, возможности и тд.
До идеала нехватает ещё поддержки синтаксиса NoSQL (Elasticserch, MongoDB и др.)
Надо пробовать на практике.
#opensource #ai #dataengineering #datatools #dataanalytics
👍4❤1
Любопытный инструмент SwellDB [1] генерация таблиц и обогащение данных с помощью LLM (OpenAI) с использованием SQL или датафреймов.
Инструмент совсем свежий, малоизвестный, идущий вместе со статьями SwellDB: Dynamic Query-Driven Table Generation with Large Language Models [2] и SwellDB: GenAI-Native Query Processing via On-the-Fly Table Generation [3]
Выглядит весьма любопытно для достаточно очевидных справочных данных, такие задачи возникают регулярно.
А ещё этот инструмент поднимает вопрос о том что многие данные теперь доступны не через каталоги и реестры НСИ, а через LLM. С помощью LLM можно создавать новые каталоги данных только из созданных датасетов или вообще обходиться без них.
Ссылки:
[1] https://github.com/SwellDB/SwellDB
[2] https://dl.acm.org/doi/10.1145/3722212.3725136
[3] https://github.com/gsvic/gsvic.github.io/blob/gh-pages/papers/SwellDB_VLDB_PhD_Workshop_2025.pdf
#dataengineering #data #opensource
Инструмент совсем свежий, малоизвестный, идущий вместе со статьями SwellDB: Dynamic Query-Driven Table Generation with Large Language Models [2] и SwellDB: GenAI-Native Query Processing via On-the-Fly Table Generation [3]
Выглядит весьма любопытно для достаточно очевидных справочных данных, такие задачи возникают регулярно.
А ещё этот инструмент поднимает вопрос о том что многие данные теперь доступны не через каталоги и реестры НСИ, а через LLM. С помощью LLM можно создавать новые каталоги данных только из созданных датасетов или вообще обходиться без них.
Ссылки:
[1] https://github.com/SwellDB/SwellDB
[2] https://dl.acm.org/doi/10.1145/3722212.3725136
[3] https://github.com/gsvic/gsvic.github.io/blob/gh-pages/papers/SwellDB_VLDB_PhD_Workshop_2025.pdf
#dataengineering #data #opensource
✍8
В качестве регулярных напоминаний, какое-то время назад я разрабатывал инструмент под названием metacrafter это специальная библиотека для Python, утилита и сервер для идентификации семантических типов данных, удобная для идентификации того что содержится к конкретном поле конкретной базы данных и вспомогательный инструмент для определения персональных данных и другого осмысленного содержания. У него есть достаточно широкий набор общедоступных правил на основе которых он работает.
В его основе принцип local-only, все его правила описываются в YAML файлах которые могут быть описаны как простые перечисления, регулярные выражения (через синтаксис pyparsing) или как функции для Python.
Правил там сейчас 262 для идентификации по наименованиям полей и по их содержанию и ещё 312 для идентификации дат на разных языках по содержанию текста.
Утилита поддерживает любую базу данных через SQLAlchemy и MongoDB, а также файлы CSV, Parquet, JSONL и тд. в том числе в сжатом виде gz, zst, xz и тд.
Более 105 правил сделаны именно под данные связанные с русскоязычными кодами и идентификаторами.
Сейчас, конечно, её надо переосмыслять для применения ИИ поскольку с помощью LLM можно сильно повысить качество её работы, но тогда она перестанет быть инструментом local-only, а станет local-first через опциональное подключение API LLM для анализа данных.
Сейчас, у меня больше всего времени уходит на Dateno поэтому инструмент я хоть и не забросил, но скорее использую её на внутренних данных чем наполняю новыми функциями и правилами.
Если Вы ей пользуетесь, напишите что в ней для полезно, а чего не хватает.
#opensource #data #datatools #dataengineering
В его основе принцип local-only, все его правила описываются в YAML файлах которые могут быть описаны как простые перечисления, регулярные выражения (через синтаксис pyparsing) или как функции для Python.
Правил там сейчас 262 для идентификации по наименованиям полей и по их содержанию и ещё 312 для идентификации дат на разных языках по содержанию текста.
Утилита поддерживает любую базу данных через SQLAlchemy и MongoDB, а также файлы CSV, Parquet, JSONL и тд. в том числе в сжатом виде gz, zst, xz и тд.
Более 105 правил сделаны именно под данные связанные с русскоязычными кодами и идентификаторами.
Сейчас, конечно, её надо переосмыслять для применения ИИ поскольку с помощью LLM можно сильно повысить качество её работы, но тогда она перестанет быть инструментом local-only, а станет local-first через опциональное подключение API LLM для анализа данных.
Сейчас, у меня больше всего времени уходит на Dateno поэтому инструмент я хоть и не забросил, но скорее использую её на внутренних данных чем наполняю новыми функциями и правилами.
Если Вы ей пользуетесь, напишите что в ней для полезно, а чего не хватает.
#opensource #data #datatools #dataengineering
👍14
Основатели Polars, высокопроизводительного движка на базе Rust для работы с датафреймами подняли $18 миллионов инвестиций на их облачный продукт Polars Cloud в котором обещают интегрировать обработку данных в облаке и сделать её потоковой. За основателей продукта можно только порадоваться, а как это отразится на их открытом продукте пока непонятно, но думаю что достаточно очевидно что явно они меньше смогут уделять внимание открытой части кода и будут больше внимание уделять коммерческому облачному продукту. Впрочем конкуренция суровая и у Polars в избытке альтернатив начиная с DuckDB, продолжая облачным Clickhouse и ещё много какими другими продуктами.
Однако стоит обратить внимание на стратегию которая привела к успешному привлечению инвестиций. Ребята взяли готовый продукт и сохраняя его интерфейс переписали его в более производительную версию за счёт переписывания на низкоуровневом языке, в данном случае Rust.
#opensource #startups #dataengineering
Однако стоит обратить внимание на стратегию которая привела к успешному привлечению инвестиций. Ребята взяли готовый продукт и сохраняя его интерфейс переписали его в более производительную версию за счёт переписывания на низкоуровневом языке, в данном случае Rust.
#opensource #startups #dataengineering
🔥7💯2❤1
Sim, ещё один любопытный продукт оркестратор потоков данных со встроенной работой с промптами. Доступен под свободной лицензией Apache 2.0, имеет встроенное ИИ и сделан по архитектуре local-first и может использоваться без облачных сервисов, а для ИИ можно связать с Ollama.
Выглядит интересно для задач с минимальной дата инженерией и как альтернатива n8n.
#opensource #dataengineering #ai #datatools
Выглядит интересно для задач с минимальной дата инженерией и как альтернатива n8n.
#opensource #dataengineering #ai #datatools
✍6👍2⚡1💯1
В блоге Meta интересный пост с анонсом OpenZL нового движка для сжатия данных соревнующегося в сжимании и очень быстро расжимании именно структурированных данных. Оно всё ещё в стадии бета, но главная специфика что в отличие от универсальных компрессов тут используются разные профили сжатия для разных структурированных данных таких как csv или parquet или результаты сохранения pytorch и др. Причем есть режим просто сжатия, а есть режим предварительного обучения на данных, создания профиля и последующего сжатия уже в соответствии с ним, в результате чего сжатия может существенно улучшиться.
Это очень интересная штука и перспективная если её пораспространять на другие типы данных: jsonl, xml и так далее. В любом случае она важна, в первую очередь. дата инженерам потому что составит конкуренцию многим форматам и даст возможность хранить сильно сжатые оригинальные файлы.
Например, нужно очень сильно сжать CSV файлы, и нельзя вот так просто преобразовать их в parquet'ы. Ещё одна фишка в том что данные сжимаются сравнимо по эффективности с xz и zstd, но быстрее и с очень высокой скоростью декомпрессии.
#compression #data #datatools #dataengineering
Это очень интересная штука и перспективная если её пораспространять на другие типы данных: jsonl, xml и так далее. В любом случае она важна, в первую очередь. дата инженерам потому что составит конкуренцию многим форматам и даст возможность хранить сильно сжатые оригинальные файлы.
Например, нужно очень сильно сжать CSV файлы, и нельзя вот так просто преобразовать их в parquet'ы. Ещё одна фишка в том что данные сжимаются сравнимо по эффективности с xz и zstd, но быстрее и с очень высокой скоростью декомпрессии.
#compression #data #datatools #dataengineering
Engineering at Meta
Introducing OpenZL: An Open Source Format-Aware Compression Framework
OpenZL is a new open source data compression framework that offers lossless compression for structured data. OpenZL is designed to offer the performance of a format-specific compressor with the eas…
1👍8❤2
Вышел Python 3.14.0 — это новая крупная версия языка программирования Python, выпущенная официально в октябре 2025 года. Она включает множество новых функций и оптимизаций по сравнению с Python 3.13:
- Официально поддерживается free-threaded режим (PEP 779), который снимает необходимость глобальной блокировки интерпретатора (GIL), что существенно улучшает многопоточную производительность.
- Введены шаблонные строковые литералы (PEP 750) для кастомной обработки строк, похожие на f-строки.
- Аннотации теперь вычисляются отложенно (PEP 649), улучшая работу с импортами.- Добавлен новый модуль compression.zstd с поддержкой алгоритма сжатия Zstandard (PEP 784).
- Улучшена поддержка UUID, добавлены версии 6-8, и генерация версий 3-5 стала до 40% быстрее.
- Встроенная реализация HMAC с формально проверенным кодом.
- Добавлен безопасный интерфейс для внешнего отладчика без накладных расходов (PEP 768).
- Появился экспериментальный JIT-компилятор в официальных сборках для macOS и Windows.
- Появились официальные бинарные сборки для Android.
-- Улучшения в работе с несколькими интерпретаторами и новый тип интерпретатора для современных компиляторов с ростом производительности.
- Улучшены сообщения об ошибках и стандартные библиотеки.
Всё выглядит как полезные изменения, переходить на эту версию пока рано, но скоро будет возможно
#python #datatools #dataengineering
- Официально поддерживается free-threaded режим (PEP 779), который снимает необходимость глобальной блокировки интерпретатора (GIL), что существенно улучшает многопоточную производительность.
- Введены шаблонные строковые литералы (PEP 750) для кастомной обработки строк, похожие на f-строки.
- Аннотации теперь вычисляются отложенно (PEP 649), улучшая работу с импортами.- Добавлен новый модуль compression.zstd с поддержкой алгоритма сжатия Zstandard (PEP 784).
- Улучшена поддержка UUID, добавлены версии 6-8, и генерация версий 3-5 стала до 40% быстрее.
- Встроенная реализация HMAC с формально проверенным кодом.
- Добавлен безопасный интерфейс для внешнего отладчика без накладных расходов (PEP 768).
- Появился экспериментальный JIT-компилятор в официальных сборках для macOS и Windows.
- Появились официальные бинарные сборки для Android.
-- Улучшения в работе с несколькими интерпретаторами и новый тип интерпретатора для современных компиляторов с ростом производительности.
- Улучшены сообщения об ошибках и стандартные библиотеки.
Всё выглядит как полезные изменения, переходить на эту версию пока рано, но скоро будет возможно
#python #datatools #dataengineering
👍11🔥2
Fivetran официально объединились с dbt Labs, а до этого они поглотили Tobiko Data, создателей SQLMesh. У них теперь под контролем аж две команды создававшие продукты номер 1 и номер 2 по корпоративной обработке данных, что чертовски похоже на монополию (на самом деле нет) и вызывает вопросы по перспективам открытых версий dbt и SQLMesh потому что два конкурирующих продукта под одной крышей.
К тому же и крыша такая что не всем нравится Fivetran из-за его новой ценовой политики основанной на числе обрабатываемых строк.
Поэтому новость не могу отнести к хорошим, но будем ждать новых свежих открытых продуктов в этой области если dbt протухнут.
#dataengineering #data #datatools
К тому же и крыша такая что не всем нравится Fivetran из-за его новой ценовой политики основанной на числе обрабатываемых строк.
Поэтому новость не могу отнести к хорошим, но будем ждать новых свежих открытых продуктов в этой области если dbt протухнут.
#dataengineering #data #datatools
Fivetran
Fivetran and dbt Labs Unite to Set the Standard for Open Data Infrastructure | Press | Fivetran
Together, Fivetran and dbt are simplifying enterprise data management with a unified foundation that powers analytics and AI at scale.
🔥4❤2
Полезные ссылки про данные, технологии и не только:
- A Deep Dive into DuckDB for Data Scientists о том как дата сайентистам использовать DuckDB. Если коротко, то всё довольно просто и понятно.
- ClickHouse welcomes LibreChat: Introducing the open-source Agentic Data Stack Clickhouse поглотил LibreChat, инструмент с открытым кодом для создания ИИ чатботов. Инструмент был хороший, надеюсь таким и останется.
- Hannes Mühleisen - Data Architecture Turned Upside Down отличное выступление Hannes Mühleisen про ключевые изменения в архитектуре данных последних лет. Полезно и по смыслу и по визуальному представлению хорошо
- agor: Next-gen agent orchestration for AI coding ИИ агент для управления ИИ кодированием, автор его создатель Superset и позиционирует этот проект как думай об асситентах для кодирования как о Figma. С открытым. кодом. Любопытно, но ИМХО автор плохо объясняет преимущества, как подхода, так и интерфейса.
#opensource #data #datatools #dataengineering #ai
- A Deep Dive into DuckDB for Data Scientists о том как дата сайентистам использовать DuckDB. Если коротко, то всё довольно просто и понятно.
- ClickHouse welcomes LibreChat: Introducing the open-source Agentic Data Stack Clickhouse поглотил LibreChat, инструмент с открытым кодом для создания ИИ чатботов. Инструмент был хороший, надеюсь таким и останется.
- Hannes Mühleisen - Data Architecture Turned Upside Down отличное выступление Hannes Mühleisen про ключевые изменения в архитектуре данных последних лет. Полезно и по смыслу и по визуальному представлению хорошо
- agor: Next-gen agent orchestration for AI coding ИИ агент для управления ИИ кодированием, автор его создатель Superset и позиционирует этот проект как думай об асситентах для кодирования как о Figma. С открытым. кодом. Любопытно, но ИМХО автор плохо объясняет преимущества, как подхода, так и интерфейса.
#opensource #data #datatools #dataengineering #ai
✍2
Полезные ссылки про данные, технологии и не только:
- quackstore расширение для DuckDB для кеширования облачных дата файлов, позволяет сильно ускорить выполнение запросов к облачным файлам благодаря их частичному сохранению. Полезная штука, её можно бы и сразу внутрь DuckDB ибо логично
- Catalog of Patterns of Distributed Systems для тех разработчиков кто хотят не только кодировать, но и двигаться в сторону архитектуры ПО.
- The Data Engineering Agent is now in preview Гугл запустили ИИ агента для дата инженеров внутри BigQuery, конечно же на базе Gemini. Дайте мне такой же только с открытым кодом и без инфраструктуры Google и с поддержкой всех основных инструментов и СУБД!
- Diseño del V Plan de Gobierno Abierto 2025-2029 5-й план по открытости гос-ва опубликовали власти Испании. Сейчас проходят публичные консультации и далее он будет утвержден. Открытые данные там, конечно же, присутствуют
#opendata #opensource #rdbms #datatools #dataengineering #ai
- quackstore расширение для DuckDB для кеширования облачных дата файлов, позволяет сильно ускорить выполнение запросов к облачным файлам благодаря их частичному сохранению. Полезная штука, её можно бы и сразу внутрь DuckDB ибо логично
- Catalog of Patterns of Distributed Systems для тех разработчиков кто хотят не только кодировать, но и двигаться в сторону архитектуры ПО.
- The Data Engineering Agent is now in preview Гугл запустили ИИ агента для дата инженеров внутри BigQuery, конечно же на базе Gemini. Дайте мне такой же только с открытым кодом и без инфраструктуры Google и с поддержкой всех основных инструментов и СУБД!
- Diseño del V Plan de Gobierno Abierto 2025-2029 5-й план по открытости гос-ва опубликовали власти Испании. Сейчас проходят публичные консультации и далее он будет утвержден. Открытые данные там, конечно же, присутствуют
#opendata #opensource #rdbms #datatools #dataengineering #ai
GitHub
GitHub - coginiti-dev/QuackStore
Contribute to coginiti-dev/QuackStore development by creating an account on GitHub.
🔥4✍2
Ещё одна совсем-совсем свежая спецификация PLOON для отправки данных в ИИ агенты с максимальной экономией токенов. Экономит до 60% в сравнении с JSON и до 14.1% в сравнении с TOON. Автор написал бенчмарк показывающий что PLOON сильно экономнее других форматов. Уже прям любопытно что дальше, когда наступит момент что ИИ агенты смогут нормально употреблять бинарные данные и тогда все эти оптимизации будет очень легко заменить.
#ai #data #dataengineering #specifications
#ai #data #dataengineering #specifications
👍4❤1
После экспериментов с простым кодом, я постепенно добрался до тех инструментов которые используются внутри Dateno для сбора данных. Один из них это утилита apibackuper которая помогает вытащить данные публикуемые через API и сохранять их в виде датасета. Фактически это инструмент скрейпинга API через декларативное описание параметров скрейпинга (да, я люблю декларативные описания). У инструмента был ряд недостатков которые я исправлял и думаю что исправил, вот перечень изменений:
- переход от декларативного описания скрейперов с INI (.cfg) файлов на YAML, читать легче, синтаксис приятнее
- валидация YAML описаний через JSON схему
- поддержка ограченичений и таймаутов на число запросов в минуту (Rate Limiting)
- поддержка аутентификации к API
- экспорт данных не только в JSONL, но и в Parquet
- автоопределение формата экспорта данных по расширению файла
- массовое обработка исключений и понятные сообщения об ошибках везде где возможно
- тесты для покрытия большей части кода
- подробная документация
- и всякое по мелочи
Я этот инструмент изначально разрабатывал для для архивации данных публикуемых через API, но сейчас он используется в части кода Dateno для выгрузки метаданных из каталогов данных. Может его даже пора уже перенести из ruarxive в dateno на Github'е, ещё не решил.
На скриншоте то как это выглядит на примере реестра лекарственных средств ЕСКЛП
Для сбора данных достаточно выполнить две команды
- apibackuper run
- apibackuper export current.parquet
Первая выгрузит все данные постранично, вторая сохранит выгруженные данные в parquet файл.
#opensource #datatools #data #dataengineering
- переход от декларативного описания скрейперов с INI (.cfg) файлов на YAML, читать легче, синтаксис приятнее
- валидация YAML описаний через JSON схему
- поддержка ограченичений и таймаутов на число запросов в минуту (Rate Limiting)
- поддержка аутентификации к API
- экспорт данных не только в JSONL, но и в Parquet
- автоопределение формата экспорта данных по расширению файла
- массовое обработка исключений и понятные сообщения об ошибках везде где возможно
- тесты для покрытия большей части кода
- подробная документация
- и всякое по мелочи
Я этот инструмент изначально разрабатывал для для архивации данных публикуемых через API, но сейчас он используется в части кода Dateno для выгрузки метаданных из каталогов данных. Может его даже пора уже перенести из ruarxive в dateno на Github'е, ещё не решил.
На скриншоте то как это выглядит на примере реестра лекарственных средств ЕСКЛП
Для сбора данных достаточно выполнить две команды
- apibackuper run
- apibackuper export current.parquet
Первая выгрузит все данные постранично, вторая сохранит выгруженные данные в parquet файл.
#opensource #datatools #data #dataengineering
✍4⚡2
Я ранее писал про применение ИИ агентов для рефакторингка кода и про декларативное программирование, а теперь а теперь расскажу про декларативное создание баз данных.
Когда я только-только начинал вести список каталогов с данными в мире я делал это в в Excel файле с парой десятков колонок и сотнями записей, потом Excel стал неудобен и я перенес все в Airtable что было удобнее в течение длительного времени, там можно было настраивать разные view на одну и ту же таблицу и целенаправленно вносить новые записи с по странам или темам. С автоматизацией было не очень, зато ручная работа облегчалась.
И вот когда у меня в голове уже созрела мысль что не попробовать ли сделать поисковик по датасетам, я понял что надо перестать думать об этих данных как о таблицах (сложно перестать, конечно) и начать думать как о реестре. Для меня тогда выбор был в том чтобы:
- перенести этот реестр в СУБД и создать поверх интерфейс для редактирования. Например, загрузить в Postgres и поверх сделать быстро интерфейс с помощью Strapi или Directus'а или других no-code инструментов
- или начать смотреть на этот реестр как на код и поместить все в Github. Не так удобно для работы вручную, но хорошо автоматизируется
В итоге я пошёл вторым путем и разрезал таблицы на индивидуальные карточки дата каталогов сохраненные как YAML файлы согласно предопределенной схеме данных. Например, вот такая карточка. Эти записи можно редактировать вручную, а можно и автоматически. Можно автоматизировать обогащение метаданных, проверку API, доступность сайтов, проверку ошибок и так далее. Чтобы собственно и происходит внутри этого репозитория. От изначальный 2 тысяч каталогов до текущего их числа в более чем 10+ тысяч дата каталогов он вырос за счет автоматизированной загрузки в него большого числа дата каталогов из их агрегаторов.
Теперь я подключил последнюю версию Cursor'а к обновлению этого репозитория и оказывается он очень хорош в массовом обновлении YAML файлов и понимает команды сформулированные в стиле:
- "Проанализируй все записи, найди те у которых веб сайт владельца не указан, найди веб сайт и заполни поля owner.name и owner.link"
- "Проверь все записи относящиеся к Бельгии и проверь доступны ли указанные там сайты"
- "Создай JSON схему для YAML файлов дата каталогов и проверь все их записи на соответствие этой схеме"
и так далее.
Магия начала работать когда реестр достиг некоторой критической массы которая "помогает" ИИ агенту понимать схемы данных, предназначение репозитория и находить несоответствия. Ручная работа всё еще необходима, но для проверки сделанного, и её тоже можно автоматизировать.
Итого сейчас в обновленных данных реестра Dateno 10 905 каталогов. Они все пока в репозитории реестра в виде YAML файлов и parquet файла слепка с данными. Это на 794 каталога данных больше чем пока есть в общедоступном реестре (всего 10 111 каталогов).
Были добавлены:
- каталоги данных на базе GBIF IPT
- большие списки каталогов данных во Франции, Испании и Нидерландах
- по мелочи каталоги данных в других странах
А также огромное число исправлений в метаданных всех каталогов.
Фактически ИИ агенты для разработки прекрасно подходят для работы с данными упакованными таким образом. Я начинаю склоняться к мысли что такое обогащение данных работает лучше чем инструменты вроде OpenRefine.
Чуть позже я буду писать об этом всем лонгрид, но это уже после завершения чистки и обогащения репозитория которое уже сильно ускорилось.
#opendata #datacatalogs #dateno #dataengineering #dataanalysis
Когда я только-только начинал вести список каталогов с данными в мире я делал это в в Excel файле с парой десятков колонок и сотнями записей, потом Excel стал неудобен и я перенес все в Airtable что было удобнее в течение длительного времени, там можно было настраивать разные view на одну и ту же таблицу и целенаправленно вносить новые записи с по странам или темам. С автоматизацией было не очень, зато ручная работа облегчалась.
И вот когда у меня в голове уже созрела мысль что не попробовать ли сделать поисковик по датасетам, я понял что надо перестать думать об этих данных как о таблицах (сложно перестать, конечно) и начать думать как о реестре. Для меня тогда выбор был в том чтобы:
- перенести этот реестр в СУБД и создать поверх интерфейс для редактирования. Например, загрузить в Postgres и поверх сделать быстро интерфейс с помощью Strapi или Directus'а или других no-code инструментов
- или начать смотреть на этот реестр как на код и поместить все в Github. Не так удобно для работы вручную, но хорошо автоматизируется
В итоге я пошёл вторым путем и разрезал таблицы на индивидуальные карточки дата каталогов сохраненные как YAML файлы согласно предопределенной схеме данных. Например, вот такая карточка. Эти записи можно редактировать вручную, а можно и автоматически. Можно автоматизировать обогащение метаданных, проверку API, доступность сайтов, проверку ошибок и так далее. Чтобы собственно и происходит внутри этого репозитория. От изначальный 2 тысяч каталогов до текущего их числа в более чем 10+ тысяч дата каталогов он вырос за счет автоматизированной загрузки в него большого числа дата каталогов из их агрегаторов.
Теперь я подключил последнюю версию Cursor'а к обновлению этого репозитория и оказывается он очень хорош в массовом обновлении YAML файлов и понимает команды сформулированные в стиле:
- "Проанализируй все записи, найди те у которых веб сайт владельца не указан, найди веб сайт и заполни поля owner.name и owner.link"
- "Проверь все записи относящиеся к Бельгии и проверь доступны ли указанные там сайты"
- "Создай JSON схему для YAML файлов дата каталогов и проверь все их записи на соответствие этой схеме"
и так далее.
Магия начала работать когда реестр достиг некоторой критической массы которая "помогает" ИИ агенту понимать схемы данных, предназначение репозитория и находить несоответствия. Ручная работа всё еще необходима, но для проверки сделанного, и её тоже можно автоматизировать.
Итого сейчас в обновленных данных реестра Dateno 10 905 каталогов. Они все пока в репозитории реестра в виде YAML файлов и parquet файла слепка с данными. Это на 794 каталога данных больше чем пока есть в общедоступном реестре (всего 10 111 каталогов).
Были добавлены:
- каталоги данных на базе GBIF IPT
- большие списки каталогов данных во Франции, Испании и Нидерландах
- по мелочи каталоги данных в других странах
А также огромное число исправлений в метаданных всех каталогов.
Фактически ИИ агенты для разработки прекрасно подходят для работы с данными упакованными таким образом. Я начинаю склоняться к мысли что такое обогащение данных работает лучше чем инструменты вроде OpenRefine.
Чуть позже я буду писать об этом всем лонгрид, но это уже после завершения чистки и обогащения репозитория которое уже сильно ускорилось.
#opendata #datacatalogs #dateno #dataengineering #dataanalysis
GitHub
dataportals-registry/data/entities/AE/Federal/opendata/databayanatae.yaml at main · commondataio/dataportals-registry
Registry of data portals, catalogs, data repositories including data catalogs dataset and catalog description standard - commondataio/dataportals-registry
✍7🔥4👍2❤1