Hugging Face выпустили коллекцию графиков 🤗 Open-source AI: year in review 2024 [1].
Где много всяких визуализаций того как в области AI работают с данными, моделями и не только, а ещё там есть график The Circle of Sharing: How Open Datasets Power AI Innovation [2] где можно увидеть как повторно компаниями используются датасеты выложенные другими компаниями.
Другие графики не менее любопытные.
Ссылки:
[1] https://huggingface.co/spaces/huggingface/open-source-ai-year-in-review-2024
[2] https://huggingface.co/spaces/huggingface/open-source-ai-year-in-review-2024
#opendata #ai #dataviz #data
Где много всяких визуализаций того как в области AI работают с данными, моделями и не только, а ещё там есть график The Circle of Sharing: How Open Datasets Power AI Innovation [2] где можно увидеть как повторно компаниями используются датасеты выложенные другими компаниями.
Другие графики не менее любопытные.
Ссылки:
[1] https://huggingface.co/spaces/huggingface/open-source-ai-year-in-review-2024
[2] https://huggingface.co/spaces/huggingface/open-source-ai-year-in-review-2024
#opendata #ai #dataviz #data
На чём быстро, просто и, желательно, недорого построить дашборд? Я лично всегда начинаю выбор с open source инструментов, часть из которых давно стали зрелыми продуктами, а другие позволяют проверить интересные технологии на практике.
Более известные
1. Apache Superset - используется уже повсеместно, много общедоступных инсталляций где можно посмотреть вживую. Например, экземпляр Superset Википедии. Уже зрелый продукт используемый многими компаниями по всему миру.
2. Grafana - довольно быстро вырвавшийся вперед инструмент для визуализации данных. Развивался изначально для отображения метрик и логов, а сейчас визуализирует почти что угодно. Для внутреннего использования очень удобно, для интеграции в свой продукт есть ограничения поскольку открытый код AGPL.
3. Metabase - когда-то основной конкурент Apache Superset, но стали отставать по скорости добавления новых возможностей и живут по принципу SaaS стартапа, с платным облачным сервисом и бесплатным продуктом для сообщества и под открытым кодом.
4. Redash - ещё один pure open-source продукт, открытый код для построения дашбордов , в этот раз под BSD2 лицензией и с поддержкой большого числа SQL и NoSQL источников данных.
Менее известные
5. Briefer - гибрид подготовки тетрадок (notebooks) и дашбордов. Изначально облачный сервис, потом выложили открытый код. Сама идея кажется разумной, но лицензия AGPL-3.0.
6. Quary - позиционируется как open source BI для инженеров. Инженерность, похоже, обеспечивается за счёт панели для SQL запросов? Выглядит простым, что может быть удобно для кого-то и полностью написан на Rust.
Непривычные
7. NeoDash - движок для дашбордов от Neo4J, базы данных и набора инструментов для работы с графами. Отличается той самой заточенностью на графовые данные. Сильно менее популярен чем другие и может быть даже малоизвестен. Лицензия Apache 2.0
8. SDMX Dashboard Generator - совсем редкая штука по созданию визуализации статистики по стандарту SDMX в виде дашборда. Открытый код, лицензия Apache 2.0. Изначально разрабатывался командой Банка международных расчётов (bis.org). Внутри используется движок Dash от Plotly
Не BI, не только дашборды
9. Dash от Plotly - нельзя назвать BI или дашбордопостроителем, это скорее инстурмент для создания data приложений. Может использоваться как компонент собственного продукта потому что лицензия MIT
10. Observable Framework не дашбордер, а генератор статистических сайтов для дата приложений. Идеально для дата сторителлинга и отчуждаемой дата аналитики. Может использоваться как часть своего продукта из-за необычной, но очень пермиссивной лицензии. Важное отличие от других продуктов - это создание статических снапшотов данных и отсутствие динамических запросов к СУБД.
Другие инструменты для дашбордов на которые стоит обратить внимание:
- Lightdash, Vizro, Datalens
#opensource #bi #datatools #dashboards #dataviz
Более известные
1. Apache Superset - используется уже повсеместно, много общедоступных инсталляций где можно посмотреть вживую. Например, экземпляр Superset Википедии. Уже зрелый продукт используемый многими компаниями по всему миру.
2. Grafana - довольно быстро вырвавшийся вперед инструмент для визуализации данных. Развивался изначально для отображения метрик и логов, а сейчас визуализирует почти что угодно. Для внутреннего использования очень удобно, для интеграции в свой продукт есть ограничения поскольку открытый код AGPL.
3. Metabase - когда-то основной конкурент Apache Superset, но стали отставать по скорости добавления новых возможностей и живут по принципу SaaS стартапа, с платным облачным сервисом и бесплатным продуктом для сообщества и под открытым кодом.
4. Redash - ещё один pure open-source продукт, открытый код для построения дашбордов , в этот раз под BSD2 лицензией и с поддержкой большого числа SQL и NoSQL источников данных.
Менее известные
5. Briefer - гибрид подготовки тетрадок (notebooks) и дашбордов. Изначально облачный сервис, потом выложили открытый код. Сама идея кажется разумной, но лицензия AGPL-3.0.
6. Quary - позиционируется как open source BI для инженеров. Инженерность, похоже, обеспечивается за счёт панели для SQL запросов? Выглядит простым, что может быть удобно для кого-то и полностью написан на Rust.
Непривычные
7. NeoDash - движок для дашбордов от Neo4J, базы данных и набора инструментов для работы с графами. Отличается той самой заточенностью на графовые данные. Сильно менее популярен чем другие и может быть даже малоизвестен. Лицензия Apache 2.0
8. SDMX Dashboard Generator - совсем редкая штука по созданию визуализации статистики по стандарту SDMX в виде дашборда. Открытый код, лицензия Apache 2.0. Изначально разрабатывался командой Банка международных расчётов (bis.org). Внутри используется движок Dash от Plotly
Не BI, не только дашборды
9. Dash от Plotly - нельзя назвать BI или дашбордопостроителем, это скорее инстурмент для создания data приложений. Может использоваться как компонент собственного продукта потому что лицензия MIT
10. Observable Framework не дашбордер, а генератор статистических сайтов для дата приложений. Идеально для дата сторителлинга и отчуждаемой дата аналитики. Может использоваться как часть своего продукта из-за необычной, но очень пермиссивной лицензии. Важное отличие от других продуктов - это создание статических снапшотов данных и отсутствие динамических запросов к СУБД.
Другие инструменты для дашбордов на которые стоит обратить внимание:
- Lightdash, Vizro, Datalens
#opensource #bi #datatools #dashboards #dataviz
superset.apache.org
Welcome | Superset
Community website for Apache Superset™, a data visualization and data exploration platform
В рубрике интересной визуализации данных DataRepublican [1] проект по визуализации доноров и получателей средств НКО в США и ряд других визуализаций. Можно сказать этакое пересечение Республиканской партии США и дата журналистики, редкое явление, но можно убедиться что реальное. На них ссылаются Wikileaks [2] подсвечивая расходы денег налогоплательщиков США на Internews [3], НКО получавшую существенную долю средств от USAID и поддерживавшее значительную часть СМИ по всему миру.
Что характерно в аккаунте Wikileaks большая волна идёт против USAID [4] с публикациями множества документов подтверждающих что мол они "лицемерные нехорошие ребята" и прямой инструмент мягкой силы США. В общем немного странно видеть такое единодушие WikiLeaks и республиканских блогеров, но допускаю что что-то пропустил.
А теперь про чисто техническое
Сама визуализация на DataRepublican интересная ещё и по тому как она сделана. Я вначале думал что там какая-то графовая база данных внутри, вроде Neo4J и сложные запросы через openCypher, но всё оказалось интереснее. В графах они подгружают на клиента ZIP файлы с CSV файлами внутри, около 7 мегабайт и распаковывают и отображают их через Javascript.
Очень оригинальное решение, я давно такого не видел. Вместо API грузить на клиента большие заархивированные батчи и обрабатывать их там после распаковки.
У них всё это, данные и код, есть в открытом репозитории, можно будет как-нибудь изучить [5]
Ссылки:
[1] https://datarepublican.com
[2] https://x.com/wikileaks/status/1888098131537183170
[3] https://datarepublican.com/expose/?eins=943027961
[4] https://x.com/wikileaks
[5] https://github.com/DataRepublican/datarepublican
#opendata #opensource #wikileaks #dataviz
Что характерно в аккаунте Wikileaks большая волна идёт против USAID [4] с публикациями множества документов подтверждающих что мол они "лицемерные нехорошие ребята" и прямой инструмент мягкой силы США. В общем немного странно видеть такое единодушие WikiLeaks и республиканских блогеров, но допускаю что что-то пропустил.
А теперь про чисто техническое
Сама визуализация на DataRepublican интересная ещё и по тому как она сделана. Я вначале думал что там какая-то графовая база данных внутри, вроде Neo4J и сложные запросы через openCypher, но всё оказалось интереснее. В графах они подгружают на клиента ZIP файлы с CSV файлами внутри, около 7 мегабайт и распаковывают и отображают их через Javascript.
Очень оригинальное решение, я давно такого не видел. Вместо API грузить на клиента большие заархивированные батчи и обрабатывать их там после распаковки.
У них всё это, данные и код, есть в открытом репозитории, можно будет как-нибудь изучить [5]
Ссылки:
[1] https://datarepublican.com
[2] https://x.com/wikileaks/status/1888098131537183170
[3] https://datarepublican.com/expose/?eins=943027961
[4] https://x.com/wikileaks
[5] https://github.com/DataRepublican/datarepublican
#opendata #opensource #wikileaks #dataviz
Полезные ссылки про данные, технологии и не только:
- Kreuzberg [1] библиотека для Python по извлечению текста из документов, поддерживает множество форматов, внутри использует Pandoc и Tesseract OCR. Создано как раз для использования в задачах RAG (Retrieval Augmented Generation) с прицелом на локальную обработку данных и минимумом зависимостей. Лицензия MIT
- Validoopsie [2] другая библиотека для Python для валидации данных. Использует библиотеку Narwhals благодаря которой подключается к почти любым видами дата-фреймов. Выглядит полезной альтернативой Great Expectations, лично для меня в валидации данных глобальный нерешённый вопрос в том что тут правильнее, код или декларативное программирования. Иначе говоря, правила проверки должны ли быть отчуждаемыми от языка разработки. Здесь валидация встроена в код, но поверх можно сделать и декларативный движок. Лицензия MIT
- Scripton [3] коммерческое IDE для Python с необычной фичей визуализации данных в реальном времени. Есть только скриншоты, записи экрана и коммерческая версия для macOS. Для тех кто занимается алгоритмической визуализацией может быть удобно, для остальных задач пока нет такой уверенности.
- New horizons for Julia [4] по сути статья о том что язык программирования Julia ещё жив и развивается. Правда медленно, на мой взгляд, но вроде как есть позитивное движение за пределами научных областей. Лично я почти не сталкивался с Julia кроме как на уровне примеров кода, но хорошо если он кому-то нравится и полезен.
- Data-Driven Scrollytelling with Quarto [5] визуализация дата-историй с помощью движка Quarto, итоги конкурса таких визуализаций с большим числом примеров и победителей. Примеры все от команды компании Posit которая этот open-source движок Quarto и разрабатывает. Скажу отдельно что это очень правильно. Если ты делаешь любой движок по визуализации, то просто обязательно надо проводить такие конкурсы.
- The Best Way to Use Text Embeddings Portably is With Parquet and Polars [6] ещё один обзор о том насколько эффективен Parquet в связке с Polars для работы с данными, в данном случае данными карт Magic of the Gathering. Автор тоже задаётся вопросом о том почему Parquet не поддерживается в MS Excel.
- How to Make Superbabies [7] особенно длинный лонгрид о том как генетическими изменениями можно улучшать человека, создавать супер детей или "оптимизированных детей", как ещё пишет автор. Читать и думать об этом надо потому что всё идёт к тому что скоро это станет ещё одной острой социальной и геополитической темой.
Ссылки:
[1] https://github.com/Goldziher/kreuzberg
[2] https://github.com/akmalsoliev/Validoopsie
[3] https://scripton.dev/
[4] https://lwn.net/Articles/1006117/
[5] https://posit.co/blog/closeread-prize-winners/
[6] https://minimaxir.com/2025/02/embeddings-parquet/
[7] https://www.lesswrong.com/posts/DfrSZaf3JC8vJdbZL/how-to-make-superbabies
#opensource #data #datatools #dataviz #genetics #python
- Kreuzberg [1] библиотека для Python по извлечению текста из документов, поддерживает множество форматов, внутри использует Pandoc и Tesseract OCR. Создано как раз для использования в задачах RAG (Retrieval Augmented Generation) с прицелом на локальную обработку данных и минимумом зависимостей. Лицензия MIT
- Validoopsie [2] другая библиотека для Python для валидации данных. Использует библиотеку Narwhals благодаря которой подключается к почти любым видами дата-фреймов. Выглядит полезной альтернативой Great Expectations, лично для меня в валидации данных глобальный нерешённый вопрос в том что тут правильнее, код или декларативное программирования. Иначе говоря, правила проверки должны ли быть отчуждаемыми от языка разработки. Здесь валидация встроена в код, но поверх можно сделать и декларативный движок. Лицензия MIT
- Scripton [3] коммерческое IDE для Python с необычной фичей визуализации данных в реальном времени. Есть только скриншоты, записи экрана и коммерческая версия для macOS. Для тех кто занимается алгоритмической визуализацией может быть удобно, для остальных задач пока нет такой уверенности.
- New horizons for Julia [4] по сути статья о том что язык программирования Julia ещё жив и развивается. Правда медленно, на мой взгляд, но вроде как есть позитивное движение за пределами научных областей. Лично я почти не сталкивался с Julia кроме как на уровне примеров кода, но хорошо если он кому-то нравится и полезен.
- Data-Driven Scrollytelling with Quarto [5] визуализация дата-историй с помощью движка Quarto, итоги конкурса таких визуализаций с большим числом примеров и победителей. Примеры все от команды компании Posit которая этот open-source движок Quarto и разрабатывает. Скажу отдельно что это очень правильно. Если ты делаешь любой движок по визуализации, то просто обязательно надо проводить такие конкурсы.
- The Best Way to Use Text Embeddings Portably is With Parquet and Polars [6] ещё один обзор о том насколько эффективен Parquet в связке с Polars для работы с данными, в данном случае данными карт Magic of the Gathering. Автор тоже задаётся вопросом о том почему Parquet не поддерживается в MS Excel.
- How to Make Superbabies [7] особенно длинный лонгрид о том как генетическими изменениями можно улучшать человека, создавать супер детей или "оптимизированных детей", как ещё пишет автор. Читать и думать об этом надо потому что всё идёт к тому что скоро это станет ещё одной острой социальной и геополитической темой.
Ссылки:
[1] https://github.com/Goldziher/kreuzberg
[2] https://github.com/akmalsoliev/Validoopsie
[3] https://scripton.dev/
[4] https://lwn.net/Articles/1006117/
[5] https://posit.co/blog/closeread-prize-winners/
[6] https://minimaxir.com/2025/02/embeddings-parquet/
[7] https://www.lesswrong.com/posts/DfrSZaf3JC8vJdbZL/how-to-make-superbabies
#opensource #data #datatools #dataviz #genetics #python
SQLRooms [1] свежий инструмент с открытым кодом в жанре "BI для небогатых". Под капотом DuckDB-WASM, снаружи приложение на React. Позволяет строить разные интерактивные дашборды, с графиками и без, с AI и без. Самое главное что небольшими усилиями. Не no-code, но ближе к low-code.
У них симпатичный пример аналитики через LLM [2] и много других примеров. В живых примерах также интересно посмотреть на Flowmap City [3] и Cosmograph [4].
Для участников хакатонов будет особенно полезно, можно быстро сделать красивую визуализацию.
Открытый код и лицензия MIT.
Ссылки:
[1] https://sqlrooms.org
[2] https://sqlrooms-ai.netlify.app/
[3] https://www.flowmap.city/
[4] https://cosmograph.app/
#opensource #duckdb #data #dataviz #datatools
У них симпатичный пример аналитики через LLM [2] и много других примеров. В живых примерах также интересно посмотреть на Flowmap City [3] и Cosmograph [4].
Для участников хакатонов будет особенно полезно, можно быстро сделать красивую визуализацию.
Открытый код и лицензия MIT.
Ссылки:
[1] https://sqlrooms.org
[2] https://sqlrooms-ai.netlify.app/
[3] https://www.flowmap.city/
[4] https://cosmograph.app/
#opensource #duckdb #data #dataviz #datatools
Прекрасный инструмент по визуализации климатических расходов в США [1] с отображением и поиске по карте и по почтовому индексу (что, кстати, отличная идея) чтобы можно было найти расходы рядом со своим домом.
Инструмент интерактивный и отражает расходы на $300 миллиардов, собранные из разных наборов данных. Всего более 73 тысяч проектов.
А также доступны код и документация [2]
Ссылки:
[1] https://grist.org/accountability/climate-infrastructure-ira-bil-map-tool/
[2] https://github.com/Grist-Data-Desk/ira-tracker
#usa #spending #datasets #climate #dataviz
Инструмент интерактивный и отражает расходы на $300 миллиардов, собранные из разных наборов данных. Всего более 73 тысяч проектов.
А также доступны код и документация [2]
Ссылки:
[1] https://grist.org/accountability/climate-infrastructure-ira-bil-map-tool/
[2] https://github.com/Grist-Data-Desk/ira-tracker
#usa #spending #datasets #climate #dataviz
Невероятный по идее и реализации геопространственный проект OpenTimes [1] в виде визуализации времени поездки на машине, велосипеде или пешком с выбором стартовой точки в виде района и далее по районам отображающий в цвете. Автор Dan Snow рассказывает подробности [2] о том как он из его создал и собрал из 300 GB файлов в несколько файлов Parquet которые хостятся в итоге на Cloudflare R2 и это обходится менее чем в $15 ежемесячно [3]. У проекта открытый исходный код [4], внутри DuckDB и Parquet файлы, Python и Javascript и много первичных данных из базы TIGER переписи населения США.
Собственно финальный объём данных около 440GB [5].
Единственный недостаток - охватывает только США, потому что только по США такие первичные данные есть.
Ссылки:
[1] https://opentimes.org/
[2] https://sno.ws/opentimes/
[3] https://opentimes.org/about/
[4] https://github.com/dfsnow/opentimes
[5] https://data.opentimes.org/
#opendata #opensource #dataviz #data
Собственно финальный объём данных около 440GB [5].
Единственный недостаток - охватывает только США, потому что только по США такие первичные данные есть.
Ссылки:
[1] https://opentimes.org/
[2] https://sno.ws/opentimes/
[3] https://opentimes.org/about/
[4] https://github.com/dfsnow/opentimes
[5] https://data.opentimes.org/
#opendata #opensource #dataviz #data
This media is not supported in your browser
VIEW IN TELEGRAM
Прекрасная визуализация When You Will Die на Flowing Data шанса прожить следующий год [1] в зависимости от возраста и пола.
Тут надо оговорится что это данные для мирного времени и для США, а для других стран и в другом состоянии статистика может быть совершенно иной.
Тем не менее, и по смыслу, и по форме хорошая подача. Там же в заметки источники данных
Ссылки:
[1] https://flowingdata.com/projects/2025/when-die/
#dataviz #lifeanddeath
Тут надо оговорится что это данные для мирного времени и для США, а для других стран и в другом состоянии статистика может быть совершенно иной.
Тем не менее, и по смыслу, и по форме хорошая подача. Там же в заметки источники данных
Ссылки:
[1] https://flowingdata.com/projects/2025/when-die/
#dataviz #lifeanddeath
В рубрике интересных проектов на данных Open Syllabus [1] проект по агрегации (скрейпингу) учебных программ по всему миру и составлению рейтингов издателей, авторов, книг популярных в разных учебных дисциплинах.
Проект изначально некоммерческий создан исследователями Колумбийского университета, сейчас поддерживается одноимённой НКО и включает общедоступные функции и интерфейсы и аналитику за платную подписку.
Важная особенность - это охват только англоязычной литературы, зато охват очень широкий. На конец марта 2025 года там были данные по :
- 5 691 университету/школе
- 94 076 издателям
- 1 911 596 авторам
- почти 3 миллионам книг и публикаций из которых 1 миллион книг и около 2 миллионов статей
Самая популярная книга глобально - это Calculus авторством James Stewart, а, к примеру, в компьютерных науках это Introduction to Algorithms за авторством T. H. Corman.
Из минусов - создатели проекта явным образом скрыли датасеты которые раньше отдавали и API для доступа к материалам, хотя оно точно было [2], и закрыли код, есть лишь только его остатки за 2016 год [3].
Тем не менее проект остаётся интересным и полезным. Аналогичные проекты на других языках: немецком, испанском, русском, французском и других были бы востребованы.
Ссылки:
[1] https://www.opensyllabus.org
[2] https://johnskinnerportfolio.com/blog/ospapi.html
[3] https://github.com/davidmcclure/open-syllabus-project
#syllabus #openprojects #analytics #dataviz
Проект изначально некоммерческий создан исследователями Колумбийского университета, сейчас поддерживается одноимённой НКО и включает общедоступные функции и интерфейсы и аналитику за платную подписку.
Важная особенность - это охват только англоязычной литературы, зато охват очень широкий. На конец марта 2025 года там были данные по :
- 5 691 университету/школе
- 94 076 издателям
- 1 911 596 авторам
- почти 3 миллионам книг и публикаций из которых 1 миллион книг и около 2 миллионов статей
Самая популярная книга глобально - это Calculus авторством James Stewart, а, к примеру, в компьютерных науках это Introduction to Algorithms за авторством T. H. Corman.
Из минусов - создатели проекта явным образом скрыли датасеты которые раньше отдавали и API для доступа к материалам, хотя оно точно было [2], и закрыли код, есть лишь только его остатки за 2016 год [3].
Тем не менее проект остаётся интересным и полезным. Аналогичные проекты на других языках: немецком, испанском, русском, французском и других были бы востребованы.
Ссылки:
[1] https://www.opensyllabus.org
[2] https://johnskinnerportfolio.com/blog/ospapi.html
[3] https://github.com/davidmcclure/open-syllabus-project
#syllabus #openprojects #analytics #dataviz
Хороший разбор в виде дата истории темы зависимости даты рождения и даты смерти в блоге The Pudding [1]. Без какой-то единой визуализации, но со множеством графиков иллюстрирующих изыскания автора и выводы о том что да, вероятность смерти у человека выше в день рождения и близкие к нему дни и это превышение выше статистической погрешности.
Собственно это не первое и, наверняка, не последнее исследование на эту тему. В данном случае автор использовал данные полученные у властей Массачусеца с помощью запроса FOIA о 57 010 лицах.
Там же есть ссылки на исследования с большими выборками, но теми же результатами.
Так что берегите себя и внимательнее относитесь к своим дням рождения, дата эта важная, игнорировать её никак нельзя.
P.S. Интересно что данные в виде таблиц со значениями дата рождения и дата смерти - это точно не персональные данные. Ничто не мешает госорганам не только в США их раскрывать, но почему-то они, всё таки, редкость.
Ссылки:
[1] https://pudding.cool/2025/04/birthday-effect/
#opendata #dataviz #curiosity #statistics
Собственно это не первое и, наверняка, не последнее исследование на эту тему. В данном случае автор использовал данные полученные у властей Массачусеца с помощью запроса FOIA о 57 010 лицах.
Там же есть ссылки на исследования с большими выборками, но теми же результатами.
Так что берегите себя и внимательнее относитесь к своим дням рождения, дата эта важная, игнорировать её никак нельзя.
P.S. Интересно что данные в виде таблиц со значениями дата рождения и дата смерти - это точно не персональные данные. Ничто не мешает госорганам не только в США их раскрывать, но почему-то они, всё таки, редкость.
Ссылки:
[1] https://pudding.cool/2025/04/birthday-effect/
#opendata #dataviz #curiosity #statistics
Internet Artifacts забавный таймлайн о том как появлялся Интернет, по годам с 1977 по 2007 годы. Сделан просто и стильно, для кого то ещё и может быть сильной ностальгией. Лично я много лет провел в IRC и современные Slack'и и Discord'ы отчасти напоминают то время.
#dataviz #history #internet
#dataviz #history #internet
В рубрике как это устроено у них портал данных Международной продовольственной программы (WFP) [1]
Включает данные климатического эксплорера где по большинстве стран можно узнать текущие и исторические данные по осадкам и другим климатическим данным.
Выглядит очень интересно и может быть полезно для тех кто анализирует гиперлокальные (муниципальные) данные поскольку по большинству стран мониторинг охватывает до второго административного уровня - муниципаоитетов, проще говоря.
С одним очень большим но... Это большое НО - это Россия. По России доступны только общестрановые данные, что для огромной страны кажется особенно странным. Нет даже данных по регионам, хотя на карте они все есть и у структур ООН есть данные о российских границах. Лично я, конечно, подозреваю с чем это связано.
Для примера, данные по районам Армении.
Ссылки:
[1] https://dataviz.vam.wfp.org
#opendata #dataviz #climate #data #russia
Включает данные климатического эксплорера где по большинстве стран можно узнать текущие и исторические данные по осадкам и другим климатическим данным.
Выглядит очень интересно и может быть полезно для тех кто анализирует гиперлокальные (муниципальные) данные поскольку по большинству стран мониторинг охватывает до второго административного уровня - муниципаоитетов, проще говоря.
С одним очень большим но... Это большое НО - это Россия. По России доступны только общестрановые данные, что для огромной страны кажется особенно странным. Нет даже данных по регионам, хотя на карте они все есть и у структур ООН есть данные о российских границах. Лично я, конечно, подозреваю с чем это связано.
Для примера, данные по районам Армении.
Ссылки:
[1] https://dataviz.vam.wfp.org
#opendata #dataviz #climate #data #russia
В рубрике как это устроено у них портал визуализации статистики Саудовской Аравии DataSaudi [1]. Все данные представленные там происходят из официальной статистической службы страны и отличаются качественной визуальной подачей и разделением на тематики, регионы и их наглядное графическое отображение.
Делают этот портал, как ещё и аналогичные порталы около десятка стран, команда DataWheel стартапа по визуализации данных.
Причём в некоторых странах, например, в США с проектом DataUSA [2] они дают не только региональные, но и муниципальные профили территорий и профили отдельных университетов.
В Саудовской Аравии внедрение по масштабу и глубине поскромнее, но по наглядности на высоте. Мне их проекты нравятся визуально и не очень нравятся отсутствием API и датасетов, впрочем они основаны на открытых данных, а не предоставляют их, так что другой формат и вполне понятный.
По смыслу их графики далеко не идеальны, например, в режиме сравнения территорий они показывают графики в разной размерности что затрудняет сравнение, но с точки зрения "красивости" есть на что посмотреть.
Ссылки:
[1] https://datasaudi.sa
[2] https://datausa.io/
#dataviz #statistics #saudiarabia #datacatalogs
Делают этот портал, как ещё и аналогичные порталы около десятка стран, команда DataWheel стартапа по визуализации данных.
Причём в некоторых странах, например, в США с проектом DataUSA [2] они дают не только региональные, но и муниципальные профили территорий и профили отдельных университетов.
В Саудовской Аравии внедрение по масштабу и глубине поскромнее, но по наглядности на высоте. Мне их проекты нравятся визуально и не очень нравятся отсутствием API и датасетов, впрочем они основаны на открытых данных, а не предоставляют их, так что другой формат и вполне понятный.
По смыслу их графики далеко не идеальны, например, в режиме сравнения территорий они показывают графики в разной размерности что затрудняет сравнение, но с точки зрения "красивости" есть на что посмотреть.
Ссылки:
[1] https://datasaudi.sa
[2] https://datausa.io/
#dataviz #statistics #saudiarabia #datacatalogs