Ivan Begtin
9.32K subscribers
2.11K photos
3 videos
103 files
4.83K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and etc.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Email ivan@begtin.tech

Ads/promotion agent: @k0shk
Download Telegram
В рубрике как это устроено у них портал открытых данных Франции data.gouv.fr [1]. Всего на портале опубликовано 61 947 набора данных, на 2 апреля 2025 г, а также 338 точек подключения к API к которым предоставлена документация, есть возможность связаться с разработчиками и тд.

Особенность их портала в большом сообществе из 131.4 тысячи зарегистрированных пользователей и 15.1 тысяче дискуссий вокруг опубликованных датасетов и API.

Параллельно с этим они создают портал открытых научных данных entrepot.recherche.data.gouv.fr [2] на базе продукта Dataverse . Там сейчас чуть менее 7 тысяч наборов данных и список постоянно растёт.

Многие команды и компании публикуют свои проекты сделанные на открытых данных Франции в специальном разделе на сайте [3].

Во Франции порталом занимается их национальная команда Etalab, почти все что они делают является открытым кодом и портал открытых данных создан на непривычном ПО - uData, используемом ещё в паре-тройке стран.

Ссылки:
[1] https://www.data.gouv.fr
[2] https://entrepot.recherche.data.gouv.fr
[3] https://www.data.gouv.fr/fr/reuses/

#opendata #datasets #france #data
Ребята из Если быть точным начали публиковать открытые данные в формате Parquet [1] за что их можно похвалить, это правильный выбор. А если кто-то ещё не пользовался данных в этом формате, то самое время это попробовать. У ребят небольшой каталог тщательно отобранных данных и эта их работа и красивая инфографика в канале - это хороший труд, они молодцы.

Ссылки:
[1] https://t.me/tochno_st/476

#opendata #datasets
В рубрике больших интересных наборов данных Global Ensemble Digital Terrain Model 30m (GEDTM30) [1] глобальная цифровая модель рельефа (DTM) в виде двух GeoTIFF файлов оптимизированных для облачной работы (cloud GeoTIFF) общим объёмом чуть менее 39 гигабайт.

Этот набор данных охватывает весь мир и может использоваться для таких приложений, как анализ топографии, гидрологии и геоморфометрии.

Создание набора данных профинансировано Европейским союзом в рамках проекта киберинфраструктуры Open-Earth-Monitor [2].

А также доступен код проекта [3] и пример визуализации в QGIS.

Доступно под лицензией CC-BY 4.0

Ссылки:
[1] https://zenodo.org/records/14900181
[2] https://cordis.europa.eu/project/id/101059548

#opendata #geodata #datasets
Тем временем в рубрике новых свежих открытых данных из России, но не о России, датасеты Сведений о динамике рыночных котировок цифровых валют и Сведения об иностранных организаторах торгов цифровых валют на веб странице на сайте ФНС России посвящённой Майнингу цифровой валюты [1]. Данные представлены в виде таблиц на странице, с возможностью экспорта в Excel и получению в формате JSON из недокументированного API.

Данные любопытные хотя и у коммерческих провайдеров их, несомненно, побольше будет и по разнообразнее.

Условия использования не указаны, исходим из того что это Public Domain.

Мы обязательно добавим их в каталог CryptoData Hub [2] вскоре.

Ссылки:
[1] https://www.nalog.gov.ru/mining/
[2] https://cryptodata.center

#opendata #russia #cryptocurrencies #crypto #datasets
В задачах качества данных есть такое явление как Data quality reports. Не так часто встречается как хотелось бы и, в основном, для тех проектов где данные существуют как продукт (data-as-a-product) потому что клиенты интересуются.

Публичных таких отчётов немного, но вот любопытный и открытый - Global LEI Data Quality Reports [1] от создателей глобальной базы идентификаторов компаний LEI. Полезно было бы такое для многих крупных открытых датасетов, но редко встречается.

Ссылки:
[1] https://www.gleif.org/en/lei-data/gleif-data-quality-management/quality-reports

#opendata #datasets #dataquality
В рубрике как это устроено у них о том как управляют публикацией открытых данных во Франции. Частью французского национального портала открытых данных является schema.data.gouv.fr [1] на котором представлено 73 схемы с описанием структурированных данных. Эти схемы охватывают самые разные области и тематики:
- схема данных о государственных закупках
- схема данных о грантах
- схема данных архивных реестров записей
и ещё много других.

Всего по этим схемам на портале data.gouv.fr опубликовано 3246 наборов данных, чуть более 5% от всего что там размещено.

Особенность портала со схемами в том что все они опубликованы как отдельные репозитории на Github созданными из одного шаблона. А сами схемы представлены, либо по стандарту Frictionless Data - тот самый формат про таблицы о котором я писал и он тут называется TableSchema, либо в формате JSONSchema когда данные не табличные. В общем-то звучит как правильное сочетания применения этих подходов.

А для простоты публикации данных по этим схемам у был создан сервис Validata [2] в котором загружаемые данные можно проверить на соответствие этой схеме.

Ссылки:
[1] https://schema.data.gouv.fr
[2] https://validata.fr/

#opendata #datasets #data #datatools #france
В рубрике интересных порталов открытых данных, свежий портал открытых данных Министерства образования Франции [1]. Сделан на базе облачного ПО OpenDataSoft и предоставляет 242 набора данных по темам образования, спорта и молодёжи.

У французской компании OpenDataSoft очень неплохой продукт каталога данных который довольно популярен на субнациональном уровне во Франции и ряде других стран, в основном ЕС. В последние версии они туда добавили новые функции такие как анализ данных и отображение их карте и в других форматах.

Например, календарь министра национального образования [2] или отображение справочника школ на карте [3], но, конечно, самое главное - это продвинутое API и экспорт данных в разных форматах: CSV, JSON, Excel, Parquet и ещё 5 форматов для геоданных.

У OpenDataSoft в итоге очень хороший прогресс с их публичными каталогами данных. Я бы их порекламировал, но в РФ их каталог неприменим, а, к примеру, для Армении слишком дорог для общественных проектов.

При всей хорошей организации их каталога, при этом, отмечу что самое большое число датасетов в них которое я видел было около 40 тысяч наборов данных. Для сравнения в CKAN есть каталоги на 1+ миллионов датасетов. Поэтому качество не значит масштаб, а масштаб не равен качеству.

Тем не менее можно увидеть как теперь публикует данные Минобразования Франции.

Ссылки:
[1] https://data.education.gouv.fr
[2] https://data.education.gouv.fr/explore/dataset/fr-en-agenda-ministre-education-nationale/calendar/?disjunctive.uid&sort=dtstart&calendarview=month
[3] https://data.education.gouv.fr/explore/dataset/fr-en-annuaire-education/map/?disjunctive.type_etablissement&disjunctive.libelle_academie&disjunctive.libelle_region&disjunctive.ministere_tutelle&disjunctive.appartenance_education_prioritaire&disjunctive.nom_commune&disjunctive.code_postal&disjunctive.code_departement&location=9,45.88427,3.1723&basemap=jawg.streets

#opendata #education #france #datasets #data #datacatalogs
Оказывается Фонд Викимедиа относительно недавно, ещё в 2022 году создал Wikimedia Enterprise [1] отдельную компанию предоставляющую современные API корпоративного уровня (modern enterprise-grade APIs) для Википедии и других их проектов.

Обещают 850+ наборов данных, 100+ миллионов страниц.

А теперь ещё и договорились с Google о выкладывании на Kaggle снэпшотов [2].

Сейчас их датасет представлен в виде 54 JSONL файлов англоязычной и франкоязычной вики и составляет [3] 113 гигабайт

Ссылки:
[1] https://enterprise.wikimedia.com/
[2] https://enterprise.wikimedia.com/blog/kaggle-dataset/
[3] https://www.kaggle.com/datasets/wikimedia-foundation/wikipedia-structured-contents/data

#opendata #datasets #wikipedia #api
В рубрике как это устроено у них новый портал данных Международного валютного фонда data.imf.org был открыт совсем недавно.

Из любопытного:
- добавилась публикация данных в форме наборов данных в разделе Datasets [1]
- обновился Data Explorer по данным статпоказателей [2]
- появился сквозной поиск одновременно по датасетам, таблицам, индикаторам и остальным объектам [3]
- появились дашборды (на базе PowerBI) [4]
- появилось новое SDMX API на базе Azure [5]

Из минусов и косяков:
- нет возможности скачать всё и сразу (bulk download), хотя частично это сделано с помощью датасетов в каталоге, но недоделано поскольку самого каталога нет в машиночитаемой форме
- нет данных в современных форматах и вообще экспорт не в CSV
- датасеты опубликованы без схем описания, нет ни Schema.org ни DCAT
- при просмотре временных рядов нельзя создать ссылку на конкретный временной ряд или отфильтрованную визуализацию
- API требует обязательной регистрации

Ссылки:
[1] https://data.imf.org/en/Datasets
[2] https://data.imf.org/en/Data-Explorer
[3] https://data.imf.org/en/Search-Results#q=Oil%20export&t=coveob02de888&sort=relevancy
[4] https://data.imf.org/en/dashboards/dip%20dashboard
[5] https://portal.api.imf.org/

#opendata #datasets #statistics #imf
В CKAN появилась поддержка схемы метаданных Croissant [1], переводится как круассан, используемой для публикации наборов данных для машинного обучения. По этой схеме уже публикуются данных в Hugging Face, Kaggle и OpenML, а теперь ещё и в репозиториях на CKAN.

Хорошо то что CKAN используется во многих особо крупных каталогах данных вроде data.europa.eu и data.gov что повышает вероятностью публикации датасетов для ML на национальных порталах открытых данных.

Ссылки:
[1] https://ckan.org/blog/bridging-ckan-and-machine-learning-introducing-support-for-the-croissant-standard

#opendata #ckan #opensource #datacatalogs #datasets
В рубрике как это устроено у них портал геоданных Всемирной продовольственной программы [1]. Работает на базе STAC Server и реализует спецификацию STAC для доступа к данным спутникового мониторинга.

Всего 140 наборов данных по погодным аномалиям, осадкам, температуре воздуха и другим показателям климата по наиболее уязвимым, в основном, наиболее бедным развивающимся странам.

Особенность STAC серверов в терминологии и способе предоставления данных. Наборы данных там называются каталогами (Catalogs), а файлы как Предметы (Items). Как правило файлы - это GeoTIFF изображения и они все отображают одну и ту же территорию в разные моменты времени.

Открытых STAC серверов в мире уже немало и становится всё больше.

В Dateno такие порталы собраны в реестре, но пока не индексируются в поиске. В основном потому что файлов к каталогу может быть приложено реально тысячи, а Dateno индексирует, в основном, классические каталоги данных где даже сто файлов в одном датасете - это много. Но в будущем эти данные будут проиндексированы тоже.

P.S. Кстати в РФ Роскосмос тоже публикует открытые данные в виде STAC сервера [2]. Немного удивительно, да?

Ссылки:
[1] https://data.earthobservation.vam.wfp.org/stac/#/?.language=en
[2] https://api.gptl.ru/stac/browser/web-free

#opendata #datasets #un #wfp #geodata
В рубрике как это работает у них один из лучших из известных мне порталов открытых данных это IDB Open Data [1] Межамериканского банка развития. Его особенность это совмещение публикации открытых данных, статистических индикаторов и исследовательских данных.

Внутри всё работает на базе CKAN со значительной кастомизацией и добавлением множества дополнительных фильтров включая геопокрытие, тематику и многое другое. А индикаторы представлены в виде файлов ресурсов приложенных к датасетам, например [2], у них нет визуализации, но их можно скачать.

Это само по себе любопытный подход к публикации, и данных, и индикаторов.

Ссылки:
[1] https://data.iadb.org
[2] https://data.iadb.org/dataset/abea491d-2123-4aed-b94a-5dcd057e4fad/resource/cdf56d56-16b7-4ab1-a76c-3637ca49068f

#opendata #datacatalogs #datasets #latinamerica
Ещё одна важная находка, оказывается облачные LLM'ки вполне неплохо научились восстанавливать данные из графиков. Причём в разных формах и разных стилях. Это даёт довольно существенные возможности по превращению PDF отчетов и презентаций в таблицы с данными.

Слишком многие данные вот таким образом закопаны в официальных отчётах. А теперь можно их "выковыривать" гораздо более универсальными способами.

#data #datasets #llm