В качестве регулярных напоминаний, какое-то время назад я разрабатывал инструмент под названием metacrafter это специальная библиотека для Python, утилита и сервер для идентификации семантических типов данных, удобная для идентификации того что содержится к конкретном поле конкретной базы данных и вспомогательный инструмент для определения персональных данных и другого осмысленного содержания. У него есть достаточно широкий набор общедоступных правил на основе которых он работает.
В его основе принцип local-only, все его правила описываются в YAML файлах которые могут быть описаны как простые перечисления, регулярные выражения (через синтаксис pyparsing) или как функции для Python.
Правил там сейчас 262 для идентификации по наименованиям полей и по их содержанию и ещё 312 для идентификации дат на разных языках по содержанию текста.
Утилита поддерживает любую базу данных через SQLAlchemy и MongoDB, а также файлы CSV, Parquet, JSONL и тд. в том числе в сжатом виде gz, zst, xz и тд.
Более 105 правил сделаны именно под данные связанные с русскоязычными кодами и идентификаторами.
Сейчас, конечно, её надо переосмыслять для применения ИИ поскольку с помощью LLM можно сильно повысить качество её работы, но тогда она перестанет быть инструментом local-only, а станет local-first через опциональное подключение API LLM для анализа данных.
Сейчас, у меня больше всего времени уходит на Dateno поэтому инструмент я хоть и не забросил, но скорее использую её на внутренних данных чем наполняю новыми функциями и правилами.
Если Вы ей пользуетесь, напишите что в ней для полезно, а чего не хватает.
#opensource #data #datatools #dataengineering
В его основе принцип local-only, все его правила описываются в YAML файлах которые могут быть описаны как простые перечисления, регулярные выражения (через синтаксис pyparsing) или как функции для Python.
Правил там сейчас 262 для идентификации по наименованиям полей и по их содержанию и ещё 312 для идентификации дат на разных языках по содержанию текста.
Утилита поддерживает любую базу данных через SQLAlchemy и MongoDB, а также файлы CSV, Parquet, JSONL и тд. в том числе в сжатом виде gz, zst, xz и тд.
Более 105 правил сделаны именно под данные связанные с русскоязычными кодами и идентификаторами.
Сейчас, конечно, её надо переосмыслять для применения ИИ поскольку с помощью LLM можно сильно повысить качество её работы, но тогда она перестанет быть инструментом local-only, а станет local-first через опциональное подключение API LLM для анализа данных.
Сейчас, у меня больше всего времени уходит на Dateno поэтому инструмент я хоть и не забросил, но скорее использую её на внутренних данных чем наполняю новыми функциями и правилами.
Если Вы ей пользуетесь, напишите что в ней для полезно, а чего не хватает.
#opensource #data #datatools #dataengineering
👍14
Основатели Polars, высокопроизводительного движка на базе Rust для работы с датафреймами подняли $18 миллионов инвестиций на их облачный продукт Polars Cloud в котором обещают интегрировать обработку данных в облаке и сделать её потоковой. За основателей продукта можно только порадоваться, а как это отразится на их открытом продукте пока непонятно, но думаю что достаточно очевидно что явно они меньше смогут уделять внимание открытой части кода и будут больше внимание уделять коммерческому облачному продукту. Впрочем конкуренция суровая и у Polars в избытке альтернатив начиная с DuckDB, продолжая облачным Clickhouse и ещё много какими другими продуктами.
Однако стоит обратить внимание на стратегию которая привела к успешному привлечению инвестиций. Ребята взяли готовый продукт и сохраняя его интерфейс переписали его в более производительную версию за счёт переписывания на низкоуровневом языке, в данном случае Rust.
#opensource #startups #dataengineering
Однако стоит обратить внимание на стратегию которая привела к успешному привлечению инвестиций. Ребята взяли готовый продукт и сохраняя его интерфейс переписали его в более производительную версию за счёт переписывания на низкоуровневом языке, в данном случае Rust.
#opensource #startups #dataengineering
🔥7💯2❤1
Sim, ещё один любопытный продукт оркестратор потоков данных со встроенной работой с промптами. Доступен под свободной лицензией Apache 2.0, имеет встроенное ИИ и сделан по архитектуре local-first и может использоваться без облачных сервисов, а для ИИ можно связать с Ollama.
Выглядит интересно для задач с минимальной дата инженерией и как альтернатива n8n.
#opensource #dataengineering #ai #datatools
Выглядит интересно для задач с минимальной дата инженерией и как альтернатива n8n.
#opensource #dataengineering #ai #datatools
✍6👍2⚡1💯1
В блоге Meta интересный пост с анонсом OpenZL нового движка для сжатия данных соревнующегося в сжимании и очень быстро расжимании именно структурированных данных. Оно всё ещё в стадии бета, но главная специфика что в отличие от универсальных компрессов тут используются разные профили сжатия для разных структурированных данных таких как csv или parquet или результаты сохранения pytorch и др. Причем есть режим просто сжатия, а есть режим предварительного обучения на данных, создания профиля и последующего сжатия уже в соответствии с ним, в результате чего сжатия может существенно улучшиться.
Это очень интересная штука и перспективная если её пораспространять на другие типы данных: jsonl, xml и так далее. В любом случае она важна, в первую очередь. дата инженерам потому что составит конкуренцию многим форматам и даст возможность хранить сильно сжатые оригинальные файлы.
Например, нужно очень сильно сжать CSV файлы, и нельзя вот так просто преобразовать их в parquet'ы. Ещё одна фишка в том что данные сжимаются сравнимо по эффективности с xz и zstd, но быстрее и с очень высокой скоростью декомпрессии.
#compression #data #datatools #dataengineering
Это очень интересная штука и перспективная если её пораспространять на другие типы данных: jsonl, xml и так далее. В любом случае она важна, в первую очередь. дата инженерам потому что составит конкуренцию многим форматам и даст возможность хранить сильно сжатые оригинальные файлы.
Например, нужно очень сильно сжать CSV файлы, и нельзя вот так просто преобразовать их в parquet'ы. Ещё одна фишка в том что данные сжимаются сравнимо по эффективности с xz и zstd, но быстрее и с очень высокой скоростью декомпрессии.
#compression #data #datatools #dataengineering
Engineering at Meta
Introducing OpenZL: An Open Source Format-Aware Compression Framework
OpenZL is a new open source data compression framework that offers lossless compression for structured data. OpenZL is designed to offer the performance of a format-specific compressor with the eas…
1👍8❤2
Вышел Python 3.14.0 — это новая крупная версия языка программирования Python, выпущенная официально в октябре 2025 года. Она включает множество новых функций и оптимизаций по сравнению с Python 3.13:
- Официально поддерживается free-threaded режим (PEP 779), который снимает необходимость глобальной блокировки интерпретатора (GIL), что существенно улучшает многопоточную производительность.
- Введены шаблонные строковые литералы (PEP 750) для кастомной обработки строк, похожие на f-строки.
- Аннотации теперь вычисляются отложенно (PEP 649), улучшая работу с импортами.- Добавлен новый модуль compression.zstd с поддержкой алгоритма сжатия Zstandard (PEP 784).
- Улучшена поддержка UUID, добавлены версии 6-8, и генерация версий 3-5 стала до 40% быстрее.
- Встроенная реализация HMAC с формально проверенным кодом.
- Добавлен безопасный интерфейс для внешнего отладчика без накладных расходов (PEP 768).
- Появился экспериментальный JIT-компилятор в официальных сборках для macOS и Windows.
- Появились официальные бинарные сборки для Android.
-- Улучшения в работе с несколькими интерпретаторами и новый тип интерпретатора для современных компиляторов с ростом производительности.
- Улучшены сообщения об ошибках и стандартные библиотеки.
Всё выглядит как полезные изменения, переходить на эту версию пока рано, но скоро будет возможно
#python #datatools #dataengineering
- Официально поддерживается free-threaded режим (PEP 779), который снимает необходимость глобальной блокировки интерпретатора (GIL), что существенно улучшает многопоточную производительность.
- Введены шаблонные строковые литералы (PEP 750) для кастомной обработки строк, похожие на f-строки.
- Аннотации теперь вычисляются отложенно (PEP 649), улучшая работу с импортами.- Добавлен новый модуль compression.zstd с поддержкой алгоритма сжатия Zstandard (PEP 784).
- Улучшена поддержка UUID, добавлены версии 6-8, и генерация версий 3-5 стала до 40% быстрее.
- Встроенная реализация HMAC с формально проверенным кодом.
- Добавлен безопасный интерфейс для внешнего отладчика без накладных расходов (PEP 768).
- Появился экспериментальный JIT-компилятор в официальных сборках для macOS и Windows.
- Появились официальные бинарные сборки для Android.
-- Улучшения в работе с несколькими интерпретаторами и новый тип интерпретатора для современных компиляторов с ростом производительности.
- Улучшены сообщения об ошибках и стандартные библиотеки.
Всё выглядит как полезные изменения, переходить на эту версию пока рано, но скоро будет возможно
#python #datatools #dataengineering
👍11🔥2
Fivetran официально объединились с dbt Labs, а до этого они поглотили Tobiko Data, создателей SQLMesh. У них теперь под контролем аж две команды создававшие продукты номер 1 и номер 2 по корпоративной обработке данных, что чертовски похоже на монополию (на самом деле нет) и вызывает вопросы по перспективам открытых версий dbt и SQLMesh потому что два конкурирующих продукта под одной крышей.
К тому же и крыша такая что не всем нравится Fivetran из-за его новой ценовой политики основанной на числе обрабатываемых строк.
Поэтому новость не могу отнести к хорошим, но будем ждать новых свежих открытых продуктов в этой области если dbt протухнут.
#dataengineering #data #datatools
К тому же и крыша такая что не всем нравится Fivetran из-за его новой ценовой политики основанной на числе обрабатываемых строк.
Поэтому новость не могу отнести к хорошим, но будем ждать новых свежих открытых продуктов в этой области если dbt протухнут.
#dataengineering #data #datatools
Fivetran
Fivetran and dbt Labs Unite to Set the Standard for Open Data Infrastructure | Press | Fivetran
Together, Fivetran and dbt are simplifying enterprise data management with a unified foundation that powers analytics and AI at scale.
🔥4❤2
Полезные ссылки про данные, технологии и не только:
- A Deep Dive into DuckDB for Data Scientists о том как дата сайентистам использовать DuckDB. Если коротко, то всё довольно просто и понятно.
- ClickHouse welcomes LibreChat: Introducing the open-source Agentic Data Stack Clickhouse поглотил LibreChat, инструмент с открытым кодом для создания ИИ чатботов. Инструмент был хороший, надеюсь таким и останется.
- Hannes Mühleisen - Data Architecture Turned Upside Down отличное выступление Hannes Mühleisen про ключевые изменения в архитектуре данных последних лет. Полезно и по смыслу и по визуальному представлению хорошо
- agor: Next-gen agent orchestration for AI coding ИИ агент для управления ИИ кодированием, автор его создатель Superset и позиционирует этот проект как думай об асситентах для кодирования как о Figma. С открытым. кодом. Любопытно, но ИМХО автор плохо объясняет преимущества, как подхода, так и интерфейса.
#opensource #data #datatools #dataengineering #ai
- A Deep Dive into DuckDB for Data Scientists о том как дата сайентистам использовать DuckDB. Если коротко, то всё довольно просто и понятно.
- ClickHouse welcomes LibreChat: Introducing the open-source Agentic Data Stack Clickhouse поглотил LibreChat, инструмент с открытым кодом для создания ИИ чатботов. Инструмент был хороший, надеюсь таким и останется.
- Hannes Mühleisen - Data Architecture Turned Upside Down отличное выступление Hannes Mühleisen про ключевые изменения в архитектуре данных последних лет. Полезно и по смыслу и по визуальному представлению хорошо
- agor: Next-gen agent orchestration for AI coding ИИ агент для управления ИИ кодированием, автор его создатель Superset и позиционирует этот проект как думай об асситентах для кодирования как о Figma. С открытым. кодом. Любопытно, но ИМХО автор плохо объясняет преимущества, как подхода, так и интерфейса.
#opensource #data #datatools #dataengineering #ai
✍2
Полезные ссылки про данные, технологии и не только:
- quackstore расширение для DuckDB для кеширования облачных дата файлов, позволяет сильно ускорить выполнение запросов к облачным файлам благодаря их частичному сохранению. Полезная штука, её можно бы и сразу внутрь DuckDB ибо логично
- Catalog of Patterns of Distributed Systems для тех разработчиков кто хотят не только кодировать, но и двигаться в сторону архитектуры ПО.
- The Data Engineering Agent is now in preview Гугл запустили ИИ агента для дата инженеров внутри BigQuery, конечно же на базе Gemini. Дайте мне такой же только с открытым кодом и без инфраструктуры Google и с поддержкой всех основных инструментов и СУБД!
- Diseño del V Plan de Gobierno Abierto 2025-2029 5-й план по открытости гос-ва опубликовали власти Испании. Сейчас проходят публичные консультации и далее он будет утвержден. Открытые данные там, конечно же, присутствуют
#opendata #opensource #rdbms #datatools #dataengineering #ai
- quackstore расширение для DuckDB для кеширования облачных дата файлов, позволяет сильно ускорить выполнение запросов к облачным файлам благодаря их частичному сохранению. Полезная штука, её можно бы и сразу внутрь DuckDB ибо логично
- Catalog of Patterns of Distributed Systems для тех разработчиков кто хотят не только кодировать, но и двигаться в сторону архитектуры ПО.
- The Data Engineering Agent is now in preview Гугл запустили ИИ агента для дата инженеров внутри BigQuery, конечно же на базе Gemini. Дайте мне такой же только с открытым кодом и без инфраструктуры Google и с поддержкой всех основных инструментов и СУБД!
- Diseño del V Plan de Gobierno Abierto 2025-2029 5-й план по открытости гос-ва опубликовали власти Испании. Сейчас проходят публичные консультации и далее он будет утвержден. Открытые данные там, конечно же, присутствуют
#opendata #opensource #rdbms #datatools #dataengineering #ai
GitHub
GitHub - coginiti-dev/QuackStore
Contribute to coginiti-dev/QuackStore development by creating an account on GitHub.
🔥4✍2
Ещё одна совсем-совсем свежая спецификация PLOON для отправки данных в ИИ агенты с максимальной экономией токенов. Экономит до 60% в сравнении с JSON и до 14.1% в сравнении с TOON. Автор написал бенчмарк показывающий что PLOON сильно экономнее других форматов. Уже прям любопытно что дальше, когда наступит момент что ИИ агенты смогут нормально употреблять бинарные данные и тогда все эти оптимизации будет очень легко заменить.
#ai #data #dataengineering #specifications
#ai #data #dataengineering #specifications
👍4❤1
После экспериментов с простым кодом, я постепенно добрался до тех инструментов которые используются внутри Dateno для сбора данных. Один из них это утилита apibackuper которая помогает вытащить данные публикуемые через API и сохранять их в виде датасета. Фактически это инструмент скрейпинга API через декларативное описание параметров скрейпинга (да, я люблю декларативные описания). У инструмента был ряд недостатков которые я исправлял и думаю что исправил, вот перечень изменений:
- переход от декларативного описания скрейперов с INI (.cfg) файлов на YAML, читать легче, синтаксис приятнее
- валидация YAML описаний через JSON схему
- поддержка ограченичений и таймаутов на число запросов в минуту (Rate Limiting)
- поддержка аутентификации к API
- экспорт данных не только в JSONL, но и в Parquet
- автоопределение формата экспорта данных по расширению файла
- массовое обработка исключений и понятные сообщения об ошибках везде где возможно
- тесты для покрытия большей части кода
- подробная документация
- и всякое по мелочи
Я этот инструмент изначально разрабатывал для для архивации данных публикуемых через API, но сейчас он используется в части кода Dateno для выгрузки метаданных из каталогов данных. Может его даже пора уже перенести из ruarxive в dateno на Github'е, ещё не решил.
На скриншоте то как это выглядит на примере реестра лекарственных средств ЕСКЛП
Для сбора данных достаточно выполнить две команды
- apibackuper run
- apibackuper export current.parquet
Первая выгрузит все данные постранично, вторая сохранит выгруженные данные в parquet файл.
#opensource #datatools #data #dataengineering
- переход от декларативного описания скрейперов с INI (.cfg) файлов на YAML, читать легче, синтаксис приятнее
- валидация YAML описаний через JSON схему
- поддержка ограченичений и таймаутов на число запросов в минуту (Rate Limiting)
- поддержка аутентификации к API
- экспорт данных не только в JSONL, но и в Parquet
- автоопределение формата экспорта данных по расширению файла
- массовое обработка исключений и понятные сообщения об ошибках везде где возможно
- тесты для покрытия большей части кода
- подробная документация
- и всякое по мелочи
Я этот инструмент изначально разрабатывал для для архивации данных публикуемых через API, но сейчас он используется в части кода Dateno для выгрузки метаданных из каталогов данных. Может его даже пора уже перенести из ruarxive в dateno на Github'е, ещё не решил.
На скриншоте то как это выглядит на примере реестра лекарственных средств ЕСКЛП
Для сбора данных достаточно выполнить две команды
- apibackuper run
- apibackuper export current.parquet
Первая выгрузит все данные постранично, вторая сохранит выгруженные данные в parquet файл.
#opensource #datatools #data #dataengineering
✍4⚡2
Я ранее писал про применение ИИ агентов для рефакторингка кода и про декларативное программирование, а теперь а теперь расскажу про декларативное создание баз данных.
Когда я только-только начинал вести список каталогов с данными в мире я делал это в в Excel файле с парой десятков колонок и сотнями записей, потом Excel стал неудобен и я перенес все в Airtable что было удобнее в течение длительного времени, там можно было настраивать разные view на одну и ту же таблицу и целенаправленно вносить новые записи с по странам или темам. С автоматизацией было не очень, зато ручная работа облегчалась.
И вот когда у меня в голове уже созрела мысль что не попробовать ли сделать поисковик по датасетам, я понял что надо перестать думать об этих данных как о таблицах (сложно перестать, конечно) и начать думать как о реестре. Для меня тогда выбор был в том чтобы:
- перенести этот реестр в СУБД и создать поверх интерфейс для редактирования. Например, загрузить в Postgres и поверх сделать быстро интерфейс с помощью Strapi или Directus'а или других no-code инструментов
- или начать смотреть на этот реестр как на код и поместить все в Github. Не так удобно для работы вручную, но хорошо автоматизируется
В итоге я пошёл вторым путем и разрезал таблицы на индивидуальные карточки дата каталогов сохраненные как YAML файлы согласно предопределенной схеме данных. Например, вот такая карточка. Эти записи можно редактировать вручную, а можно и автоматически. Можно автоматизировать обогащение метаданных, проверку API, доступность сайтов, проверку ошибок и так далее. Чтобы собственно и происходит внутри этого репозитория. От изначальный 2 тысяч каталогов до текущего их числа в более чем 10+ тысяч дата каталогов он вырос за счет автоматизированной загрузки в него большого числа дата каталогов из их агрегаторов.
Теперь я подключил последнюю версию Cursor'а к обновлению этого репозитория и оказывается он очень хорош в массовом обновлении YAML файлов и понимает команды сформулированные в стиле:
- "Проанализируй все записи, найди те у которых веб сайт владельца не указан, найди веб сайт и заполни поля owner.name и owner.link"
- "Проверь все записи относящиеся к Бельгии и проверь доступны ли указанные там сайты"
- "Создай JSON схему для YAML файлов дата каталогов и проверь все их записи на соответствие этой схеме"
и так далее.
Магия начала работать когда реестр достиг некоторой критической массы которая "помогает" ИИ агенту понимать схемы данных, предназначение репозитория и находить несоответствия. Ручная работа всё еще необходима, но для проверки сделанного, и её тоже можно автоматизировать.
Итого сейчас в обновленных данных реестра Dateno 10 905 каталогов. Они все пока в репозитории реестра в виде YAML файлов и parquet файла слепка с данными. Это на 794 каталога данных больше чем пока есть в общедоступном реестре (всего 10 111 каталогов).
Были добавлены:
- каталоги данных на базе GBIF IPT
- большие списки каталогов данных во Франции, Испании и Нидерландах
- по мелочи каталоги данных в других странах
А также огромное число исправлений в метаданных всех каталогов.
Фактически ИИ агенты для разработки прекрасно подходят для работы с данными упакованными таким образом. Я начинаю склоняться к мысли что такое обогащение данных работает лучше чем инструменты вроде OpenRefine.
Чуть позже я буду писать об этом всем лонгрид, но это уже после завершения чистки и обогащения репозитория которое уже сильно ускорилось.
#opendata #datacatalogs #dateno #dataengineering #dataanalysis
Когда я только-только начинал вести список каталогов с данными в мире я делал это в в Excel файле с парой десятков колонок и сотнями записей, потом Excel стал неудобен и я перенес все в Airtable что было удобнее в течение длительного времени, там можно было настраивать разные view на одну и ту же таблицу и целенаправленно вносить новые записи с по странам или темам. С автоматизацией было не очень, зато ручная работа облегчалась.
И вот когда у меня в голове уже созрела мысль что не попробовать ли сделать поисковик по датасетам, я понял что надо перестать думать об этих данных как о таблицах (сложно перестать, конечно) и начать думать как о реестре. Для меня тогда выбор был в том чтобы:
- перенести этот реестр в СУБД и создать поверх интерфейс для редактирования. Например, загрузить в Postgres и поверх сделать быстро интерфейс с помощью Strapi или Directus'а или других no-code инструментов
- или начать смотреть на этот реестр как на код и поместить все в Github. Не так удобно для работы вручную, но хорошо автоматизируется
В итоге я пошёл вторым путем и разрезал таблицы на индивидуальные карточки дата каталогов сохраненные как YAML файлы согласно предопределенной схеме данных. Например, вот такая карточка. Эти записи можно редактировать вручную, а можно и автоматически. Можно автоматизировать обогащение метаданных, проверку API, доступность сайтов, проверку ошибок и так далее. Чтобы собственно и происходит внутри этого репозитория. От изначальный 2 тысяч каталогов до текущего их числа в более чем 10+ тысяч дата каталогов он вырос за счет автоматизированной загрузки в него большого числа дата каталогов из их агрегаторов.
Теперь я подключил последнюю версию Cursor'а к обновлению этого репозитория и оказывается он очень хорош в массовом обновлении YAML файлов и понимает команды сформулированные в стиле:
- "Проанализируй все записи, найди те у которых веб сайт владельца не указан, найди веб сайт и заполни поля owner.name и owner.link"
- "Проверь все записи относящиеся к Бельгии и проверь доступны ли указанные там сайты"
- "Создай JSON схему для YAML файлов дата каталогов и проверь все их записи на соответствие этой схеме"
и так далее.
Магия начала работать когда реестр достиг некоторой критической массы которая "помогает" ИИ агенту понимать схемы данных, предназначение репозитория и находить несоответствия. Ручная работа всё еще необходима, но для проверки сделанного, и её тоже можно автоматизировать.
Итого сейчас в обновленных данных реестра Dateno 10 905 каталогов. Они все пока в репозитории реестра в виде YAML файлов и parquet файла слепка с данными. Это на 794 каталога данных больше чем пока есть в общедоступном реестре (всего 10 111 каталогов).
Были добавлены:
- каталоги данных на базе GBIF IPT
- большие списки каталогов данных во Франции, Испании и Нидерландах
- по мелочи каталоги данных в других странах
А также огромное число исправлений в метаданных всех каталогов.
Фактически ИИ агенты для разработки прекрасно подходят для работы с данными упакованными таким образом. Я начинаю склоняться к мысли что такое обогащение данных работает лучше чем инструменты вроде OpenRefine.
Чуть позже я буду писать об этом всем лонгрид, но это уже после завершения чистки и обогащения репозитория которое уже сильно ускорилось.
#opendata #datacatalogs #dateno #dataengineering #dataanalysis
GitHub
dataportals-registry/data/entities/AE/Federal/opendata/databayanatae.yaml at main · commondataio/dataportals-registry
Registry of data portals, catalogs, data repositories including data catalogs dataset and catalog description standard - commondataio/dataportals-registry
✍7🔥4👍2❤1
Для тех кто анализирует данные и тд. я масштабно обновил инструмент metacrafter https://github.com/apicrafter/metacrafter по идентификации семантических типов данных, включая персональные данные по многим странам и языка.
Что изменилось:
- добавлено много новых правил и обновлены имеющиеся
- сильно оптимизирован код для ускорения мэтчинга правил
- добавлена возможность фильтрации правил по стране (страна указывается в файле правил)
- добавлено множество опций для командной строки
Изменений много, они могут давать ложные срабатывания потому что некоторые правила таковы что много что под них может подпасть, поэтому управление правилами и улучшилось с точки зрения фильтрации по стране.
Собственно сами правила тоже обновились https://github.com/apicrafter/metacrafter-rules
Это не финальные изменения, а подготовка кода к интеграцию в Dateno.
#opensource #datatools #dataengineering
Что изменилось:
- добавлено много новых правил и обновлены имеющиеся
- сильно оптимизирован код для ускорения мэтчинга правил
- добавлена возможность фильтрации правил по стране (страна указывается в файле правил)
- добавлено множество опций для командной строки
Изменений много, они могут давать ложные срабатывания потому что некоторые правила таковы что много что под них может подпасть, поэтому управление правилами и улучшилось с точки зрения фильтрации по стране.
Собственно сами правила тоже обновились https://github.com/apicrafter/metacrafter-rules
Это не финальные изменения, а подготовка кода к интеграцию в Dateno.
#opensource #datatools #dataengineering
GitHub
GitHub - apicrafter/metacrafter: Metadata and data identification tool and Python library. Identifies PII, common identifiers,…
Metadata and data identification tool and Python library. Identifies PII, common identifiers, language specific identifiers. Fully customizable and flexible rules - apicrafter/metacrafter
👍3❤1🔥1
Ещё один полезный инструмент для дата инженера и аналитика data-peek SQL клиент для десктопа под Windows, Mac и Linux с поддержкой PostgreSQL, MySQL и Microsoft SQL. Для личного пользования лицензия MIT и открытый код, для коммерческого отдельная лицензия и платное использование.
В целом ничего нового, кроме построителя SQL запросов через ИИ модели, поддерживает многие модели включая локальные через Ollama.
Как же много таких клиентов появилось в последнее время, кто бы сделал аналогичное для NoSQL: Elasticsearch, OpenSearch, MongoDB и тд.
А еще лучше для SPARQL'я потому что программировать SPARQL запросы это боль для психически неподготовленной личности. Именно очеловечивание запросов способно придать SPARQL'ю новую жизнь, по моему разумению.
Но понятно, на самом деле, почему таких инструментов нет, потому что ёмкость рынка инструментов для SQL превышает все остальные. Но тогда уж надо добавлять поддержку не Microsoft SQL, а Clickhouse, SQLite, DuckDB и тд.
#opensource #datatools #dataengineering #tools
В целом ничего нового, кроме построителя SQL запросов через ИИ модели, поддерживает многие модели включая локальные через Ollama.
Как же много таких клиентов появилось в последнее время, кто бы сделал аналогичное для NoSQL: Elasticsearch, OpenSearch, MongoDB и тд.
А еще лучше для SPARQL'я потому что программировать SPARQL запросы это боль для психически неподготовленной личности. Именно очеловечивание запросов способно придать SPARQL'ю новую жизнь, по моему разумению.
Но понятно, на самом деле, почему таких инструментов нет, потому что ёмкость рынка инструментов для SQL превышает все остальные. Но тогда уж надо добавлять поддержку не Microsoft SQL, а Clickhouse, SQLite, DuckDB и тд.
#opensource #datatools #dataengineering #tools
👏4👍2🤝1