Размышляя над задачами поиска данных (data discovery) и их доступностью вспоминаю про ключевой принцип отличия открытых данных от общедоступной информации. Статус данных как открытых предполагает осознанность владельцем данных того что он делает. Чтобы опубликовать датасет, ему/ей надо подумать о метаданных, надо выбрать лицензию, надо подготовить данные в машиночитаемом виде и, желательно, убедится что данные разумного качества. Это всё хорошо работает когда такая осознанность у владельца данных есть и работает так себе когда её недостаточно.
Но дело в том что кроме данных публикуемых осознанно есть много чего что публикуется AS IS без размышлений о правах, статусе и машиночитаемости. Иногда это недокументированные API, иногда веб страницы пригодные к скрейпингу, иногда что-то ещё. В любом случае это данные которые по всем формальным критериям, в первую очередь, юридическим относить к открытым данным нельзя.
Когда мы говорим про поиск данных, то пользователи редко ищут именно открытые данные, их, как правило, интересуют данные насколько возможно хорошего качества, желательно с максимальной свободой использования и желательно с минимальным техническим порогом для их использования. Желательно машиночитаемых, но часто если даже нет, то можно и скрейпить их из HTML или из документов .
Я довольно давно размышляю о том как можно охватить больше данных за пределами каталогов данных и идей и мыслей довольно много, но за каждым шагом есть свои ограничения и оценка востребованности.
1. Сейчас Dateno индексирует данные работая с ограниченным числом источников каталогизируемых полу-вручную. Если отказаться от этого принципа и подключить индексирование всего что есть через краулинг schema.org Dataset, то число наборов данных можно нарастить на 10-15 миллионов датасетов, одновременно снизится качество метаданных, появится SEO спам и просто мусор. Одна из претензий к Google Dataset Search именно по наличию такого мусора в индексе и сильная заспамленность.
2. Кроме датасетов по schema.org есть огромное число машиночитаемых ресурсов и API доступных через краулинг сайтов. Самые очевидные RSS/ATOM фиды которые к API можно отнести. Менее очевидные, к примеру, эндпоинты ArcGIS серверов которые и так уже активно в Dateno добавлялись , но не как датасеты, а как каталоги таблиц и с ручной проверкой. Тем не менее открытых API немало, но их поиск и доступность ближе к задачам OSINT и инфобеза, а не только data discovery.
3. Многие немашиночитаемые сведения можно делать машиночитаемыми автоматически. Извлекать таблицы из разных языков разметки, преобразовывать документы в таблицы или извлекать таблицы из контента там где они есть. Например, из НПА, из научных статей, из корпоративной отчетности и ещё много чего. Но это тоже много маленьких данных, интересных некоторым исследователям, журналистам, но не так вероятно что интересные data scientist'ам.
4. Тем не менее если оценивать качество поиска по числу наборов данных как основному критерию, то обогнать Google Dataset Search и другие поисковики по данным - это не то реальная, это не такая уж сложная задача. Вызовы в ней скорее в моделировании, как создавать фасеты на разнородных данных, не всегда имеющих геопривязку, например
5. Сложнее задача в создании нового качества доступа к общедоступным данным. Как сделать проиндексированные датасеты удобными? Как облегчить работу аналитиков и иных пользователей? И вот тут концептуальный момент в том где происходит переход от поисковика по метаданным к системе управления данными. К примеру, для статистических индикаторов невелика разница между тем чтобы индексировать их описание (метаданные) и сами значения. По ресурсоёмкости почти одно и то же, а имея копии сотен статистических порталов данных, остаёмся ли мы поисковиком или становимся агрегатором и можно превращаться во что-то вроде Statista ? Неочевидно пока что
#opendata #datasearch #datasets #dateno #thoughts
Но дело в том что кроме данных публикуемых осознанно есть много чего что публикуется AS IS без размышлений о правах, статусе и машиночитаемости. Иногда это недокументированные API, иногда веб страницы пригодные к скрейпингу, иногда что-то ещё. В любом случае это данные которые по всем формальным критериям, в первую очередь, юридическим относить к открытым данным нельзя.
Когда мы говорим про поиск данных, то пользователи редко ищут именно открытые данные, их, как правило, интересуют данные насколько возможно хорошего качества, желательно с максимальной свободой использования и желательно с минимальным техническим порогом для их использования. Желательно машиночитаемых, но часто если даже нет, то можно и скрейпить их из HTML или из документов .
Я довольно давно размышляю о том как можно охватить больше данных за пределами каталогов данных и идей и мыслей довольно много, но за каждым шагом есть свои ограничения и оценка востребованности.
1. Сейчас Dateno индексирует данные работая с ограниченным числом источников каталогизируемых полу-вручную. Если отказаться от этого принципа и подключить индексирование всего что есть через краулинг schema.org Dataset, то число наборов данных можно нарастить на 10-15 миллионов датасетов, одновременно снизится качество метаданных, появится SEO спам и просто мусор. Одна из претензий к Google Dataset Search именно по наличию такого мусора в индексе и сильная заспамленность.
2. Кроме датасетов по schema.org есть огромное число машиночитаемых ресурсов и API доступных через краулинг сайтов. Самые очевидные RSS/ATOM фиды которые к API можно отнести. Менее очевидные, к примеру, эндпоинты ArcGIS серверов которые и так уже активно в Dateno добавлялись , но не как датасеты, а как каталоги таблиц и с ручной проверкой. Тем не менее открытых API немало, но их поиск и доступность ближе к задачам OSINT и инфобеза, а не только data discovery.
3. Многие немашиночитаемые сведения можно делать машиночитаемыми автоматически. Извлекать таблицы из разных языков разметки, преобразовывать документы в таблицы или извлекать таблицы из контента там где они есть. Например, из НПА, из научных статей, из корпоративной отчетности и ещё много чего. Но это тоже много маленьких данных, интересных некоторым исследователям, журналистам, но не так вероятно что интересные data scientist'ам.
4. Тем не менее если оценивать качество поиска по числу наборов данных как основному критерию, то обогнать Google Dataset Search и другие поисковики по данным - это не то реальная, это не такая уж сложная задача. Вызовы в ней скорее в моделировании, как создавать фасеты на разнородных данных, не всегда имеющих геопривязку, например
5. Сложнее задача в создании нового качества доступа к общедоступным данным. Как сделать проиндексированные датасеты удобными? Как облегчить работу аналитиков и иных пользователей? И вот тут концептуальный момент в том где происходит переход от поисковика по метаданным к системе управления данными. К примеру, для статистических индикаторов невелика разница между тем чтобы индексировать их описание (метаданные) и сами значения. По ресурсоёмкости почти одно и то же, а имея копии сотен статистических порталов данных, остаёмся ли мы поисковиком или становимся агрегатором и можно превращаться во что-то вроде Statista ? Неочевидно пока что
#opendata #datasearch #datasets #dateno #thoughts
К вопросу о качестве индексов в больших агрегаторов данных, приведу в пример SciDB [1] китайский агрегатор и портал для раскрытия научных данных. Всего там 8,7 миллионов объектов, можно было бы называть их датасетами, но датасеты там далеко не всё.
Когда смотришь подробнее на статистику то оказывается что в фильтрах гораздо меньше данных. В фильтре по годам 3.5 миллионов записей, в фильтре по типу около 5 миллионов записей из которых 4.25 - это "Other data",а по фильтру тематик вообще размечено только 50 тысяч наборов данных.
И тут просто таки начинаешь задаваться вопросом, а где же всё остальное? Неужели где-то врут?
Но, скорее всего не врут, а не договаривают. Общий индекс может быть большим, но данные там не родные, а импортированные из DataCite или Zenodo и других ресурсов. Они почти наверняка не размечены и не сматчены с тематиками SciDB и всем остальным. Похожая ситуация и в базе поиска Datacite и в OpenAIRE когда большая часть фильтров не фильтрует потому что нужно много работать над этим. Качество метаданных и качество поисковых индексов очень невысокое. Увы( Но это можно рассматривать не как проблему, а как вызов.
В Dateno тематическая классификация датасетов сейчас решается через классифицированные источники и через авторазметку по простым правилам, а в планах добавить разметку по расширенному классификатору и это даст возможность находить самые неожиданные данные.
Ссылки:
[1] https://www.scidb.cn
#opendata #datasets #datasearch #china
Когда смотришь подробнее на статистику то оказывается что в фильтрах гораздо меньше данных. В фильтре по годам 3.5 миллионов записей, в фильтре по типу около 5 миллионов записей из которых 4.25 - это "Other data",а по фильтру тематик вообще размечено только 50 тысяч наборов данных.
И тут просто таки начинаешь задаваться вопросом, а где же всё остальное? Неужели где-то врут?
Но, скорее всего не врут, а не договаривают. Общий индекс может быть большим, но данные там не родные, а импортированные из DataCite или Zenodo и других ресурсов. Они почти наверняка не размечены и не сматчены с тематиками SciDB и всем остальным. Похожая ситуация и в базе поиска Datacite и в OpenAIRE когда большая часть фильтров не фильтрует потому что нужно много работать над этим. Качество метаданных и качество поисковых индексов очень невысокое. Увы( Но это можно рассматривать не как проблему, а как вызов.
В Dateno тематическая классификация датасетов сейчас решается через классифицированные источники и через авторазметку по простым правилам, а в планах добавить разметку по расширенному классификатору и это даст возможность находить самые неожиданные данные.
Ссылки:
[1] https://www.scidb.cn
#opendata #datasets #datasearch #china