Ivan Begtin
7.98K subscribers
1.8K photos
3 videos
101 files
4.5K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts ivan@begtin.tech
Download Telegram
В рубрике полезного чтения про данные, технологии и не только:
- G7 Toolkit for Artificial Intelligence in the Public Sector [1] руководство от стран G7 по созданию и эксплуатации доверительного ИИ в госсекторе. Иначе говоря рекомендации госслужащим по работе с ИИ.
- Data’s Role in Unlocking Scientific Potential [2] обзор инициатив и набор рекомендаций о том как доступность данных для учёных меняет науку в США. Если коротко, то больше открытости - больше науки.
- The Age of AI Nationalism and Its Effects [3] о стремительном развитии ИИ национализма
- Interesting startup idea: benchmarking cloud platform pricing [4] любопытная идея для стартапа, сравнение расценок облачных платформ. Не знаю насчёт стартапа, но проблема есть, без сомнения.

Ссылки:
[1] https://www.oecd.org/en/publications/g7-toolkit-for-artificial-intelligence-in-the-public-sector_421c1244-en.html
[2] https://www.scsp.ai/wp-content/uploads/2024/10/Datas-Role-in-Unlocking-Scientific-Potential-Paper.pdf
[3] https://www.cigionline.org/publications/the-age-of-ai-nationalism-and-its-effects/
[4] https://blog.pragmaticengineer.com/spare-cores/

#opendata #ai #ideas #readings
Я в ближайшие дни больше расскажу про большое обновление в Dateno.io которое мы недавно произвели, а там, в первую очередь, большое обновление индекса на 4 миллиона датасетов и личный кабинет с API [1].

А пока немного о том что есть в Dateno и нет в большинстве поисковиков по данным. Это то что Dateno теперь крупнейший поисковик по статистическим индикаторам по всему миру. Сейчас в базе данных более чем 6.7 миллионов индикаторов, в привязке к источникам данных, странам, темам и многому другому.

Основные источники статистики - это статистические порталы ряда стран и глобальные каталоги индикаторов от Всемирного Банка, Банка международных расчётов и ряда структур ООН.

Этих источников, на самом деле, значительно больше и до конца года мы их добавим. Есть ещё пара десятков глобальных и около сотни национальных порталов со статистикой.

Но, далеко не со всеми из них работать просто, и вот почему:
1. Далеко не все порталы статистики создаются на типовом ПО, основное типовое ПО для статистики это PxWeb и .Stat Suite. Сайты на базе PxWeb уже индексируется в Dateno, а на .Stat Suite будут в скором будущем. Но таковых не так много
2. Даже если порталы сделаны на одном из типовых ПО, не всегда они пригодны используют актуальные версии ПО. Например, статбанк Армении [2] работает на ПО PxWeb старой версии и чтобы его проиндексировать надо писать специальный парсер, потому что стандартное API не работает.
3. Далеко не все, даже лучшие международные примеры порталов статистики, предоставляют её в стандартизированных форматах и с возможностью дать ссылку на конкретный индикатор. Есть прекрасные примеры, вроде портала Банка международных расчётов [3], но и плохих примеров много, вроде портала статистики ООН [4]

Тем не менее и текущие 6.7 миллионов индикаторов - это много. Это возможность поиска страновой статистики удобным образом. К примеру, для поиска статистики по тем странам где нет порталов открытых данных или удобных сайтов статслужб.

В это обновление не попали данные Евростата и ЕЦБ, ещё нескольких структур ООН и не только, но они попадут в следующие и тогда число индикаторов достигнет 10-12 миллионов, а может быть и больше;)

А пока, если Вы ищете статистику, то Dateno - это хорошее место чтобы начать её искать.

Далее, я расскажу про то как работать с API Dateno в примерах и поиске датасетов по нестандартным темам, таким как криптовалюта, извлечение данных из документов и превращение банков документов в порталы данных и не только.

Ссылки:
[1] https://api.dateno.io
[2] https://statbank.armstat.am
[3] https://data.bis.org
[4] https://data.un.org

#opendata #dateno #statistics #datasets
Свежая AI модель предсказания погоды от NASA и IBM [1] причём модель обучена была на множестве GPU, а запустить её можно на настольном компьютере.

Причём модель эта была построена на базе датасета MERRA-2 [2] с более чем 40 годами наблюдения за Землёй

Ссылки:
[1] https://research.ibm.com/blog/foundation-model-weather-climate
[2] https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

#opendata #datasets #data #climate #ai
Как обещал пишу о том как работать с API Dateno, пока на уровне совсем азов, а далее будут примеры на Python и других языках. Может быть даже SDK, телеграм бот и не только.

1. Идём на Dateno.io, нажимаем на Sign In и регистрируемся на сайте my.dateno.io, там же получаем ключ
2. Открывает документацию на API по адресу api.dateno.io и смотрим как устроены запросы
3. Берём командную строку или UI инструмент или Python и делаем запрос к эндпоинту. Например такой запрос: https://api.dateno.io/index/0.1/query?apikey=my_personal_key&q=Nuclear&filters="source.countries.name"="Kazakhstan" где my_personal_key ключ из личного кабинета.
4. Получаем ответом JSON с результатами поиска по ключевому слову "Nuclear" и по стране Казахстан (Kazakhstan). В ответе ссылки на статистику связанную с ядерной энергетикой страны
5. Параметр filters можно передавать много раз и задавать не только страну, но и тип ПО (source.software.name), тип каталога данных source.catalog_type или тип владельца каталога данных "source.owner_type".
6. Фильтры - это фасеты. При запросе они возвращаются в атрибуте facetDistribution. Можно сделать вначале запрос без фасетов, получить найденные значения и далее фильтровать. Если будет запрос от пользователей, то мы опубликуем, в дополнение к API, полные значения фасетов.
7. В результатах поиска есть ссылка на первоисточник, но нет ссылок на ресурсы которые файлы или API. Чтобы из получить надо сделать запрос к точке подключения https://api.dateno.io/search/0.1/entry/{entry_id}?apikey=my_personal_key где entry_id - это идентификатор записи из результатов поиска. Ресурсов может не быть, иногда, может быть только один как в случае на картинке, а может быть много, десятки. Поэтому к ним запросы индивидуально.

API - это уникальная фича Dateno, открытого API нет у Google Dataset Search и большинства поисковиков по данным. Оно есть только у некоторых поисковиков по научным данным/ресурсам, но они сильно меньше по размеру чем индекс Dateno.

Пишите мне если про API будут вопросы, они почти наверняка появятся.

#opendata #api #dateno #datasearch #data
Могу сказать что один из самых частых вопросов по Dateno - это как сделать чтобы мои данные были проиндексированы? Вопрос этот одновременно очень простой и сложный.

Модель индексирования данных в Dateno основано на доверии к источникам данных. Вместо того чтобы сканировать весь интернет на наличие датасетов, существует реестр каталогов данных [1] в котором более 10 тысяч каталогов и куча метаданных о них. Чуть более половины этих каталогов данных уже проиндексированы и доля проиндексированных постепенно растёт.

Индексирование датасетов таким образом, на самом деле, сложнее чем попытаться воспроизвести краулер Google Data Search (GDS), потому что для такого краулера можно было бы просто взять индекс Common Crawl и регулярно обновлять метаданные оттуда. Ресурсоёмкая, но интеллектуально простая задача. Если идти таким путём то немедленно всплывают все проблемы с качеством данных, с тем что существенная часть датасетов публикуется только для SEO продвижения и так далее.

Индексирование каталогов же предполагает что кто-то уже провел работу по валидации того что этот датасет не полное фуфло, а что-то осмысленное.

Поэтому как проще всего опубликовать датасеты? Проще всего, либо опубликовать на одном из каталогов данных которые Dateno индексирует. Второй вариант - это развернуть собственный каталог данных и прислать на него ссылку. Но этот каталог должен работать на типовом ПО таком как CKAN [2], DKAN [3], JKAN [4], InvenioRDM [5] и ряде других. Если Вы публикуете не один набор данных, а множество то использование типового портала для их публикации - это хорошая практика. Например, в РФ от Инфокультуры мы создавали Хаб открытых данных [6], а в Армении Data Catalog Armenia [7], оба на базе движка CKAN как наиболее продвинутого для публикации данных.

У публичных каталогов открытых данных, при этом, есть свои ограничения. К примеру, мы закрыли регистрацию пользователей на наших CKAN порталах из-за бесконечного объёма спама. А то есть, если Вы хотите там что-то опубликовать, то надо написать админам чтобы они Вас там зарегистрировали. Спамеры - это неприятная часть нашей жизни и ещё один довод в пользу создания собственных каталогов данных.

Тем не менее у нас в Dateno постоянно крутится идея того что иногда чтобы что-то проиндексировать, надо это что-то собрать в каталог. А Dateno не каталог, а именно поисковик. Например, крипто данные разбросаны по интернету. Возможно стоит создать каталог крипто данных и уже его проиндексировать в Dateno. Он будет указывать на первоисточники, конечно, но будет пополняем. Хорошая ли это идея? Пока непонятно, если бы был подтверждённый исследовательский интерес к теме то можно было бы хоть сразу запилить каталог данных для исследователей по этой теме.

А вот другой пример, многие госорганы в разных странах массово публикуют документы. И, предположим, у нас есть код превращающий таблицы из документов в машиночитаемые файлы. Но вот так просто их не поместить сейчас в Dateno потому что Dateno содержит только ссылки на ресурсы, но не сами файлы. Расширять ли Dateno или делать промежуточный каталог данных ?

Есть немало таких примеров с необходимостью промежуточных каталогов для существенного расширения доступности многих данных. И это уже куда больше чем просто индексация данных, де-факто это создание датасетов. Техника с помощью которой мы можем добавить в поисковый индекс ещё десяток миллионов карточек датасетов без феноменальных усилий.

Возвращаясь к публикации данных, Dateno - это поисковик. Задача его как продукта в повышении находимости данных. Всегда есть большой соблазн отклониться чуть в сторону, расширить границы продукта и добавить больше возможностей за пределами строго определённых фич. Публикация данных одна из таких возможностей, над которой, мы конечно же думаем.

Ссылки:
[1] https://dateno.io/registry
[2] https://ckan.org
[3] https://getdkan.org
[4] https://jkan.io
[5] https://inveniosoftware.org/products/rdm/
[6] https://hubofdata.ru
[7] https://data.opendata.am

#opendata #datasets #data #datasearch #dateno
К вопросу о том как хорошо и правильно публиковать данные могу привести в пример проект OpenSanctions [1] который изначально создавался как полностью открытый, сейчас развивается как открытый для некоммерческого использования, но это касается условий юридических, а технически там всё очень грамотно.

Это крупнейший в мире открытый агрегатор всех санкционных датасетов и связанных с ними данных, например, реестров чиновников, членов парламентов, олигархов и других PEPs'ов (Politically exposed persons). Там есть и санкции против РФ, и против Ирана, и против десятков других стран и внутристрановые списки и ограничения.

Чем интересен их подход?
1. Все датасеты гармонизированы к набору схем и предоставляются сразу через стандартизированное API и дампами файлов для массовой выгрузки. Файлы не генерируются на лету, а сразу предсобраны и актуализируются при обновлении
2. Команда ведёт публичный changelog [2] всех изменений в структурах данных. Это как блог, но узкотематический, полезный для понимания внутреннего устройства.
3. Они же отдают массовые (bulk) выгрузки и дельты изменений [3]

Конечно, правильно сравнивать их сервис с коммерческими продуктами торговли данными и предоставления доступа к ним. Можно сравнивать к примеру, с Dune.com [4], сервисом доступа к крипто данным для аналитиков или с Databento [5] сервисом торговли данными для финансовых рынков.

Сравнивать с ними корректно потому что это коммерческие сервисы и на ту же аудиторию, тех кто работает с финансами или оказывает финансовые услуги. Разница лишь в происхождении, команда Open Sanctions вышла из среды открытого кода и открытых данных, поэтому, к примеру, не могут, а может и не хотят, закрыть свой продукт полностью.

У меня в этом смысле к их проекту двойное отношение.

Как вовлечённый в открытые данные уже 15 лет я, конечно, не одобряю не открытые лицензии и лично сам бы в их проект ничего контрибьютить бы не стал. Он, формально, уже не открытый.

А как предприниматель создающий собственные, в том числе коммерческие, проекты на данных и вокруг них вроде того же Dateno.io я их прекрасно понимаю. Устойчивое финансирование проектов по открытости встречается крайне редко и чаще всего бывает в долгосрочных научных проектах и научной инфраструктуре.

Ссылки:
[1] https://www.opensanctions.org
[2] https://www.opensanctions.org/changelog/
[3] https://www.opensanctions.org/faq/80/bulk-deltas/
[4] https://dune.com
[5] https://databento.com

#opendata #datasets #data
В рубрике как это устроено у них перепись в Великобритании проходила 3 года назад, в 2021 году, с того момента уже давно доступны датасеты и многие региональные инструменты просмотра сведений о переписи. Например, в Северной Ирландии статистическое агентство NISRA предоставляет доступ к навигатору по данным переписи с детализацией до переписных участков [1], а также их данные доступны на их же портале открытых данных [2].

Причём можно увидеть что многие переписный участки - это всего несколько сотен сельских жителей, 2-3 села, максимум.

А статистика там довольно подробная, я бы сказал практически полезная для любой социологии.

Что можно добавить. Если в Вашей стране прошла перепись и она недоступна хотя бы в таком виде, то может быть переписи не проходило?

Ссылки:
[1] https://explore.nisra.gov.uk/area-explorer-2021/
[2] https://data.nisra.gov.uk/

#opendata #datasets #ireland #uk #northernireland #census
Подборка полезного чтения про данные, технологии и не только:
- How we built a new powerful JSON data type for ClickHouse [1] статья от Павла Круглого про реализацию нового типа JSON в ClickHouse. Много подробностей и можно предполагать что новые фичи и этот тип стоит опробовать. По моему опыту ещё совсем недавно ClickHouse резко проигрывал DuckDB в разборе/импорте любого типа JSON документов. В общем надо тестировать, если всё так хорошо как написано, это может быть альтернативой MongoDB
- GERDA - German Elections Database [2] научный онлайн проект с базой по выборам в Германии с 1953 года. Доступно в виде наборов данных и пакета для языка R.
- Why techies leave Big Tech [3] почему технари покидают бигтехи? Да много почему, где-то увольнения, где-то стагнация и тупики в карьере. Автор пишет про основные причины и о том почему не надо так в бигтехи стремиться. Лично я для себя вообще не представляю что могло бы подтолкнуть там работать (ну если только бигтех не придёт с большим кошельком инвестиций в наш стартап Dateno, но это совсем другая тема)

Ссылки:
[1] https://clickhouse.com/blog/a-new-powerful-json-data-type-for-clickhouse
[2] http://www.german-elections.com/
[3] https://newsletter.pragmaticengineer.com/p/leaving-big-tech

#readings #data #datasets #opendata #careers #bigtech