Ivan Begtin
9.32K subscribers
2.11K photos
3 videos
103 files
4.83K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and etc.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Email ivan@begtin.tech

Ads/promotion agent: @k0shk
Download Telegram
Marimo [1] альтернатива Jupyter Notebook по созданию аналитических и научных тетрадок. Среди многих альтернатив отличается наличием открытого кода под лицензией Apache 2.0. Даёт некоторое число фич которых нет у Jupyter, например, встраивание UI элементов, ячейки с SQL, визуализации и ряд других фич.

Конечно, объективно, сравнивать надо не только с Jupyter, но и с Deepnote, Hex, Google Collab, но те врядли будут доступны с исходным кодом.

Ссылки:
[1] https://marimo.io

#opensource #datascience #data #datatools
У Benn Stancil очередная замечательная заметка Most graduate degrees in analytics are scams [1] на более чем актуальную тему - многочисленных магистерских программ по аналитике (применительно к данным) в колледжах и университетах. Он сам и ему в комментариях там набрасывают немало инсайтов почему эти магистерские дипломы никак не влияют на привлекательность человека на рынке или влияют в обратную сторону и являются "красным флажком".

Ключевое в его посыле в том что академические программы по дата аналитике учат тому как работать сложными методами с очень простыми и лёгкими данными в том время как в реальной жизни всё наоборот, ты работаешь очень простыми методами с очень сложными данными. Сложными во всех смыслах: собрать, связать, очистить, ощутить неполноту не поддающуюся исправлениям и тд. Причём сложная математика, за очень и очень редким исключением, возникает только в data science, а сложные методы почти вообще никогда.

И там же у него о том почему стартапы ищут тех кто поступил в Гарвард или Стенфорд, но их не волнует учился ли там человек далее, потому что экзамен в эти университеты - это как IQ тест, говорит о человеке больше чем готовность учиться далее.

И наконец, как правильно пишет один из комментаторов, слишком часто люди отучившиеся по магистерским программам по аналитике теряют профессиональное любопытство. Это нормально для некоторых профессий, но не в IT, и не в аналитике в частности где всё довольно быстро меняется.

У Benn'а много хороших текстов и это один из них, стоит почитать хотя бы чтобы просто подумать над этой темой.

Что я могу добавить так это то что хуже чем магистерские программы - это многочисленные курсы по аналитике продаваемые под соусом "увеличь свою зарплату в 4 раза". В них есть худшее от обоих миров, это про обучение как работать с очень простыми данными очень простыми методами. Чем более массовыми такие курсы являются, тем больше они являются красными флажками для любого профессионального работодателя.
Потому что их прохождение говорит следующее:
1. Вас можно обмануть заманухой о быстром повышении зарплаты через явный скам.
2. Вы готовы потратить много времени на курс по которому можно было бы учиться самостоятельно, открытых материалов множество

У Benn'а есть совет в том что важнее взять данные которые реально вам интересны и сделать самостоятельную аналитику на их основе, копаясь в них до тех пока пока не найдётся нечто реально интересное.

Я к этому совету готов присоединится и усилить. Индустриальный опыт и любопытство в работе с данными в резюме и собеседовании значительно превосходят почти любое образование и курсы.

Ссылки:
[1] https://benn.substack.com/p/most-graduate-degrees-in-analytics

#it #dataanalytics #data #thoughts