Ivan Begtin
9.34K subscribers
2.12K photos
3 videos
103 files
4.84K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and etc.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Email ivan@begtin.tech

Ads/promotion agent: @k0shk
Download Telegram
Тем временем в рубрике новых свежих открытых данных из России, но не о России, датасеты Сведений о динамике рыночных котировок цифровых валют и Сведения об иностранных организаторах торгов цифровых валют на веб странице на сайте ФНС России посвящённой Майнингу цифровой валюты [1]. Данные представлены в виде таблиц на странице, с возможностью экспорта в Excel и получению в формате JSON из недокументированного API.

Данные любопытные хотя и у коммерческих провайдеров их, несомненно, побольше будет и по разнообразнее.

Условия использования не указаны, исходим из того что это Public Domain.

Мы обязательно добавим их в каталог CryptoData Hub [2] вскоре.

Ссылки:
[1] https://www.nalog.gov.ru/mining/
[2] https://cryptodata.center

#opendata #russia #cryptocurrencies #crypto #datasets
Кстати, вот такой вопрос. А какие есть хорошие инструменты и, желательно, кейсы открытых или недорогих инструментов для совместной работы аналитиков? Причём желательно для тех кто умеет Excel и не умеет SQL.

Есть JupyterLab, но он про тех кто умеет в Python и всё что касается больших данных там, всё равно, про SQL. То же самое с RStudio и RStudio совсем не про совместную работу.

И, не на облачных платформах, а так чтобы можно было развернуть локально.
Примерно с такими требованиями:
1. Подключением к наиболее популярным базам данных: PostgreSQL, Clickhouse,
2. Совместные пространства для работы от 2 до 10 человек
3. Возможность получения данных интерактивными запросами и SQL
4. Возможность экспорта данных в Excel
5. Возможность сохранять и делиться результатами внутри пространств: файлы, таблицы, дашборды (желательно)
6. Гибкое управление доступом к пространствам и ресурсам: публичные и закрытые пространства.
7. Желательно с поддержкой Jupyter Notebooks.

Что-то из этого могут инструменты вроде Yandex Datalens (есть open source версия) и SuperSet, но так чтобы всё это вместе - такого не знаю.

Поделитесь личным опытом.

#questions #dataanalytics
Обнаружил ещё один инструмент по проверке данных validator [1], умеет делать кросс табличные проверки данных и использует схему из спецификации Frictionless Data [2]. Пока малоизвестный, но кто знает. Он выглядит неплохо по способу реализации, но есть проблема с самой спецификацией и о ней отдельно.

Я неоднократно писал про Frictionless Data, это спецификация и набор инструментов созданных в Open Knowledge Foundation для описания и публикации наборов данных. Спецификация много лет развивалась, вокруг неё появился пул инструментов, например, свежий Open Data Editor [3] помогающий готовить датасеты для публикации на дата платформах на базе ПО CKAN.

С этой спецификацией есть лишь одна, но серьёзная проблема. Она полноценно охватывает только плоские табличные файлы. Так чтобы работать со схемой данных, использовать их SDK, тот же Open Data Editor и тд. Это даёт ей применение для некоторых видов данных с которыми работают аналитики и куда хуже с задачами дата инженерными.

Существенная часть рабочих данных с которыми я сталкивался - это не табличные данные. К примеру, в плоские таблицы плохо ложатся данные о госконтрактах или юридических лицах или объектах музейных коллекций. Там естественнее применения JSON и, соответственно, построчного NDJSON.

Для таких данных куда лучше подходят пакеты валидации данных вроде Cerberus [4]. Я использовал её в случае с реестром дата каталогов [5] в Dateno и пока не видел решений лучше.

Ссылки:
[1] https://github.com/ezwelty/validator/
[2] https://specs.frictionlessdata.io
[3] https://opendataeditor.okfn.org
[4] https://docs.python-cerberus.org/
[5] https://github.com/commondataio/dataportals-registry/

#opensource #data #datatools #dataquality
В задачах качества данных есть такое явление как Data quality reports. Не так часто встречается как хотелось бы и, в основном, для тех проектов где данные существуют как продукт (data-as-a-product) потому что клиенты интересуются.

Публичных таких отчётов немного, но вот любопытный и открытый - Global LEI Data Quality Reports [1] от создателей глобальной базы идентификаторов компаний LEI. Полезно было бы такое для многих крупных открытых датасетов, но редко встречается.

Ссылки:
[1] https://www.gleif.org/en/lei-data/gleif-data-quality-management/quality-reports

#opendata #datasets #dataquality
В рубрике как это устроено у них о том как управляют публикацией открытых данных во Франции. Частью французского национального портала открытых данных является schema.data.gouv.fr [1] на котором представлено 73 схемы с описанием структурированных данных. Эти схемы охватывают самые разные области и тематики:
- схема данных о государственных закупках
- схема данных о грантах
- схема данных архивных реестров записей
и ещё много других.

Всего по этим схемам на портале data.gouv.fr опубликовано 3246 наборов данных, чуть более 5% от всего что там размещено.

Особенность портала со схемами в том что все они опубликованы как отдельные репозитории на Github созданными из одного шаблона. А сами схемы представлены, либо по стандарту Frictionless Data - тот самый формат про таблицы о котором я писал и он тут называется TableSchema, либо в формате JSONSchema когда данные не табличные. В общем-то звучит как правильное сочетания применения этих подходов.

А для простоты публикации данных по этим схемам у был создан сервис Validata [2] в котором загружаемые данные можно проверить на соответствие этой схеме.

Ссылки:
[1] https://schema.data.gouv.fr
[2] https://validata.fr/

#opendata #datasets #data #datatools #france
Я лично не пишу научных статей, потому что или работа с данными, или писать тексты. Но немало статей я читаю, почти всегда по очень узким темам и пользуюсь для этого, в основном, Semantic Scholar и подобными инструментами. Смотрю сейчас Ai2 Paper Finder [1] от института Аллена и они в недавнем его анонсе [2] пообещали что он умеет находить очень релевантные ответы по по очень узким темам. Собственно вот пример запроса по узкой интересной мне теме и он нашёл по ней 49 работ.

Вот это очень интересный результат, в списке интересных мне инструментов прибавилось однозначно.

Там же в анонсе у них есть ссылки на схожие продукты в этой области и на бенчмарки LitSearch [3] и Pasa [4] для измерения качества поиска по научным работам работам.

Ссылки:
[1] https://paperfinder.allen.ai/
[2] https://allenai.org/blog/paper-finder
[3] https://github.com/princeton-nlp/LitSearch
[4] https://github.com/bytedance/pasa

#ai #openaccess #opensource #science
И о научных работах которые я искал, собственно более всего меня интересовали свежие статьи о автодокументировании наборов данных и вот наиболее релевантная работа AutoDDG: Automated Dataset Description Generation using Large Language Models [1] которую я проглядел несмотря на то что у меня в Semantic Scholar настроены фильтры с уведомлением о статьях по определенным темам. Кстати, хорошо бы если бы эти фильтры могли иметь форму запросов к AI помощнику, результаты должны быть точнее.

А статья интересная, от команды Visualization, Imaging, and Data Analysis Center at New York University (VIDA-NYU) которые делали очень много разных инструментов по автоматизации анализа данных и, кстати, они авторы одного из поисковиков по открытым данным Auctus [2], только они забросили этот проект года 3 назад, но он был интересен.

Вот эта команда вместе со статьёй выложили код AutoDDG [3] который пока явно мало кто видел. Можно код посмотреть и увидеть что они там делали примерно то что и я в утилите undatum [4], но с лучшей проработкой. Вернее у меня проработка была практическая и моя утилита умеет датасеты в разных форматах документировать, но у них, несомненно, качество документирования проработаннее и продуманнее.

Хорошая статья, полезный код. Прилинковывать его к своим проектам я бы не стал, но идеи подсмотреть там можно. Заодно они применяют ИИ для выявления семантических типов данных, приятно что кто-то думает в том же направлении что и я;)

Ссылки:
[1] https://www.semanticscholar.org/reader/5298f09eced7aa2010f650ff16e4736e6d8dc8fe
[2] https://github.com/VIDA-NYU/auctus
[3] https://github.com/VIDA-NYU/AutoDDG
[4] https://t.me/begtin/6578

#opensource #datadocumentation #ai #aitools
В продолжение влияния тарифов на технологические компании, полезная заметка Trade, Tariffs, and Tech [1] от Бена Томпсона. Там много интересных рассуждений о параллелях между текущей ситуацией и Никсоновским шоком [2] в виде приостановки Бреттон-Вудских соглашений. Но это макроэкономика и это интересно, но, важнее практический исход.

Собственно из технологических компаний, похоже, более всего может пострадать Apple из-за высокой зависимости от производство в Китае и, в принципе, за пределами США, но безболезненный перенос его в США маловероятен. Далее он пишет про высокую вероятность снижения доходов всех рекламных BigTech'ов поскольку меньше дешёвых товаров=меньше массовых рекламных контрактов и, наконец, с меньшей вероятностью это затронет Microsoft с их бизнесом по продаже софта кроме разве что увеличения стоимости строительства дата центров.

Ссылки:
[1] https://stratechery.com/2025/trade-tariffs-and-tech/
[2] https://ru.wikipedia.org/wiki/%D0%9D%D0%B8%D0%BA%D1%81%D0%BE%D0%BD%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D1%88%D0%BE%D0%BA

#tech #tariffs #readings
Очень любопытный подход к созданию каталогов данных для распространения тяжёлых датасетов бесплатно 0$ Data Distribution [1]. Если вкратце то автор воспользовался сервисом Clouflare R2 в опции Egress и используя DuckDB и таблицы Iceberg, распространяя файлы в формате Parquet.

DuckDB там можно заменить на PyIceberg или Snowflake, главное возможность бесплатно подключить и захостить данные. У автора хорошее демо [2] с тем как это работает, ограничения только в том что надо вначале, достаточно быстро и автоматически получить ключ доступа к каталогу, но это как раз не проблема.

Это, с одной стороны, выглядит как чистый лайфхак ибо Cloudflare может изменить ценовую политику, а с другой очень даже полезная модель применения.

И сама работа с таблицами используя Apache Iceberg [3]. Если вы ещё не читали об этом подходе и инструменте, то стоит уделить время. Это тот случай когда каталог данных существует в дата инженерном контексте, а то есть по автоматизации работы с данными, но без СУБД. Однако поверх Iceberg можно построить свои системы управления данными, как открытые так и не очень. Это одна из фундаментальных технологий в том смысле что из неё и других как конструктор можно собрать свой дата продукт.

Ссылки:
[1] https://juhache.substack.com/p/0-data-distribution
[2] https://catalog.boringdata.io/dashboard/
[3] https://iceberg.apache.org/

#opensource #datacatalogs #dataengineering #analytics
Docker теперь умеет запускать ИИ модели [1], похоже что пока только на Mac с Apple Silicon, но обещают скоро и на Windows с GPU ускорением.

Пора обновлять ноутбуки и десктопы.😜

Ссылки:
[1] https://www.docker.com/blog/introducing-docker-model-runner/

#ai #docker #llm
Про Apache Iceberg как всё более нарастающий технологический тренд в дата инженерии, ещё в декабре 2024 года Amazon добавили его поддержку в S3, а сейчас появляется всё больше число инструментов поддерживающих подключение к Apache Iceberg.

Даже удивительно как технология которой уже более 8 лет может стремительно набрать популярность при достижении определённого уровня зрелости и появлении эффективных инструментов.

Что важно знать про Apache Iceberg:
1. Это стандарт и ПО для построения озер данных созданный для преодоления ограничений предыдущих продуктов со схожими функциями такими как Apache Hudi
2. В основе Apache Iceberg технологии хранения на базе S3 и файлы Parquet. Parquet используется как контейнеры хранения данных, а S3 как хранилище данных и метаданных
3. Фундаментальная идея в реализации недорого хранилища для аналитических данных с высокопроизводительным доступом через SQL.
4. Важная причина роста популярности в комбинации: производительности, снижения стоимости и большой экосистемы из движком для запросов (query engines)
5. Серверных продуктов с открытым кодом для Apache Iceberg пока немного, кроме самой референсной реализации есть Nessie и Lakekeeper. Но много облачных провайдеров которые поддерживают такие таблицы.
6. Большая часть примеров сейчас про облачные S3 хранилища, в основном AWS. Для подключения S3 совместимых хранилищ требуется повозится
7. Применять Apache Iceberg оправдано когда у вас есть команда аналитиков умеющих в SQL и совсем неоправдано для не умеющих
8. К задачам связанным с открытыми данными этот тип дата каталога малоприменим потому что он про удобное рабочее место для продвинутого аналитика, а не про дистрибуцию данных.
9. Вообще такие продукты - это про разницу между каталогами данных, каталогами метаданных, каталогами открытых данных. Названия выглядят так словно отличий мало, а отличия огромны. Как и области применения.

#opensource #dataengineering #dataanalytics #iceberg
Полезные ссылки про данные, технологии и не только:
- Cloudflare R2 data catalog [1] свежий каталог данных на базе Apache Iceberg от Cloudflare поверх их сервиса хранения файлов R2. Хорошая новость, потому что R2 дешевле Amazon S3 при сравнимом качестве сервиса. Жду когда Backblaze запустит аналогичный сервис для их Backblaze B2
- xorq [2] читается как zork, фреймворк для обработки данных с помощью разных движков. Там и DuckDB, и Pandas, и DataFusion и др. Удобство в универсальности, но продукт пока малоизвестный, надо смотреть
- Iceberg?? Give it a REST! [3] автор рассуждает о том что без REST каталога Iceberg малополезен и, в принципе, про развитие этой экосистемы. Многие уже рассматривают стремительный взлёт Iceberg как хайп, что не отменяет того что технология весьма любопытная.
- BI is dead. Change my mind. [4] текст от Engeneering director в Clickhouse о том как меняется (может поменяться) BI в ближайшее время. TLDR: LLM + MCP + LibreChat. Чтение полезное для всех кто занимается внутренней аналитикой и использует Clickhouse
- Roadmap: Data 3.0 in the Lakehouse Era [5] изменения в экосистеме управления данными с точки зрения венчурного капитала. Простым языком для тех кто инвестирует средства в то какие новые технологии в дата инженерии появились и развиваются.

Ссылки:
[1] https://blog.cloudflare.com/r2-data-catalog-public-beta/
[2] https://github.com/xorq-labs/xorq
[3] https://roundup.getdbt.com/p/iceberg-give-it-a-rest
[4] https://www.linkedin.com/pulse/bi-dead-change-my-mind-dmitry-pavlov-2otae/
[5] https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era

#opensource #dataanalytics #datatools #dataengineering
По поводу каталогов данных на базы Apache Iceberg, я не поленился и развернул один на базе Cloudflare R2 о котором писал ранее и могу сказать что всё прекрасно работает, с некоторыми оговорками конечно:

- каталог в Cloudflare R2 настраивается очень просто, без танцев с бубном, но требует ввода карты даже если не надо платить (на бесплатном тарифе в R2 можно хранить до 10GB и бесплатный исходящий трафик). Фактически там просто одна галочка которую надо включить
- подключение к pyIceberg также крайне простое, и в части загрузки данных, и в части запросов к ним. Для всего есть примеры
- а вот для прямого подключения DuckDB к этому каталогу танцы с бубном явно понадобятся, потому что в документации нет ничего про R2, примеры только с Amazon S3 Tables и Amazon Glue, скорее всего всё вскоре появится, но пока ничего нет.
- не заработало передача параметров фильтрации в функции table.scan, что решается последующим запросом к не фильтрованным записям, но при фильтрации требует очень много памяти;
- какие-либо UI для каталогов Apache Iceberg пока отсутствуют. Вернее есть встроенные инструменты в облачных сервисах и возможность посмотреть на загруженное в open source каталогах типа Nessie и Lakehouse, но всё это встроенные интерфейсы. Явно напрашивается UI для Iceberg browser и доступ к таблицам из веб интерфейса через DuckDB WASM к примеру.
- спецификация предусматривает возможность задания метаданных таблицам и пространствам имён, но у меня это не сработало. Впрочем я бы метаданные по пространствам имён хранил бы отдельно. Как то это логичнее
- хотя UI для каталога нет, но UI для доступа к данным в нём можно обеспечить через UI к DuckDB. Хотя для DuckDB нет пока инструкций для подключения к R2, но есть примеры прямого чтения метаданных по файлу манифеста в JSON
- есть ощущение что для работы с Iceberg и подобными таблицами напрашивается кеширующий клиент. Собственно я не первый и не один кто об этом думает.

В целом выглядит перспективно как долгосрочная технология, но ещё много что требует оптимизации и инструментарий только на стадии становления.

#datatools #data #dataengineering #dataanalytics
Полезные ссылки про данные, технологии и не только:
- vanna [1] движок с открытым кодом по генерации SQL запросов к СУБД на основе промптов. Относится к классу продуктов text-to-sql. Поддерживает много видом LLM и много баз данных. Выглядит многообещающие и его есть куда применить. Лицензия MIT.
- Boring Data [2] готовые шаблоны для Terraform для развёртывания своего стека данных. А я даже не думал что это может быть чем-то большим чем консультации, а оказывается тут просто таки автоматизированный сервис с немалым ценником.
- Understanding beneficial ownership data use [3] отчет о том как используются данные о бенефициарных собственниках компании, от Open Ownership. Пример того как делать исследования аудитории по большим общедоступным значимым базам данных / наборам данных.
- Дашборд по качеству данных в opendata.swiss [4] а ещё точнее по качеству метаданных, этим многие озадачены кто создавал большие каталоги данных.
- Open Data in D: Perfekte Idee, halbherzige Umsetzung? Ein Erfahrungsbericht. [5] выступление с рассказом о состоянии доступа к геоданным в Германии с конференции FOSSIG Munster. Всё на немецком, но всё понятно😜 там же презентации. TLDR: все геоданные в Германии доступны, но не во всех территориях одинаково. Можно только позавидовать
- Legal frictions for data openness [6] инсайты из 41 юридического случая проблем с использованием открытых данных для обучения ИИ.

Ссылки:
[1] https://github.com/vanna-ai/vanna
[2] https://www.boringdata.io/
[3] https://www.openownership.org/en/publications/understanding-beneficial-ownership-data-use/
[4] https://dashboard.opendata.swiss/fr/
[5] https://pretalx.com/fossgis2025/talk/XBXSVJ/
[6] https://ok.hypotheses.org/files/2025/03/Legal-frictions-for-data-openness-open-web-and-AI-RC-2025-final.pdf

#opendata #data #dataengineering #readings #ai #dataquality #geodata
Любопытный проект Local deep research [1] локальный privacy-first инструмент для постановки заданий LLM для комплексных исследований. По аналогии с режимами deep research в OpenAI, Perplexity и других облачных прдуктах.

Описание очень симпатично и кажется практичным, но лично у меня с первой попытки не завелось, исследования по темам Recent development in CSV files analysis и Recent development in automatic data analysis не принесли никаких результатов.

Наверняка дело в настройках, но, как бы, из коробки не заработало. Тем не менее, несомненно, инструмент интересный.

Впрочем это не единственный инструмент, есть ещё deep-searcher [2] который тоже умеет искать с использованием разных моделей и возвращать результаты локально.

Ссылки:
[1] https://github.com/LearningCircuit/local-deep-research
[2] https://github.com/zilliztech/deep-searcher

#opensource #ai #research #analytics
Ivan Begtin
Любопытный проект Local deep research [1] локальный privacy-first инструмент для постановки заданий LLM для комплексных исследований. По аналогии с режимами deep research в OpenAI, Perplexity и других облачных прдуктах. Описание очень симпатично и кажется…
Про состояние открытости данных в России, краткая сводка на сегодня 16 апреля 2025 г.

Негативное
- федеральный портал data.gov.ru так и не [пере]запущен и недоступен уже несколько много лет.
- портал статистики ЕМИСС fedstat.ru де-факто заморожен в любом развитии, многие показатели удалены, другие не обновляются. Публикуемые открытые данные неполны. Каких либо изменений в функциональности нет с момента его запуска.
- портал криминальной статистики crimestat.ru не обновляется с начала 2022 года
- портал данных Минкультуры России opendata.mkrf.ru не обновляется кроме ряда наборов данных, при выгрузке крупнейших датасетов выдаёт ошибку
- большинство порталов открытых данных субъектов федерации ФОИВов не обновлялись более 6 лет и содержат устаревшие и бесполезные наборы административных данных малого объёма
- госполитика поощрения раскрытия данных научных исследований отсутствует
- госполитика публикации открытых геопространственных данных отсутствует, почти все наборы геоданных имеют те или иные ограничения (не свободны)

Нейтральное
- идут разговоры на государственном уровне про публикацию датасетов для AI продолжаются, есть вероятность что хотя бы часть из них будут общедоступны
- наборы данных созданные исследователями из РФ продолжают публиковаться на платформах Kaggle, Hugging Face, Github и др. На сегодняшний день государственная политика по запрету этого не введена.

Позитивное
- Банк России начал публиковать многие из своих таблиц/датасетов в форматах доступных через REST API
- ФНС России продолжает публиковать и обновлять данные у себя на сайте www.nalog.gov.ru как старые датасеты, так и публикуют новые данные. Не всегда в разделе открытых данных, иногда в форме страниц с недокументированным API

#opendata #stateofopendata
Про состояние открытости данных в Армении, ещё более краткая сводка😜 на сегодня 16 апреля 2025 г.

Негативное
- Правительство Армении не публикует никаких открытых данных, не имеет таких обязательств и даже не прописало их публикацию в обещаниях в рамках Open Government Partnership, в отличие от других стран участников.
- внутренний спрос на доступность госданных очень невысок, требуется много усилий на раскачку сообщества

Нейтральная
- многие данные доступны на сайтах, требуется их парсинг и описание. Многое не публикуется не из-за политики закрытости, а по бедности, нет ресурсов и явного нет запроса.

Позитивное
- данные публикует сообщество, конкретно наше Open Data Armenia (opendata.am и ТГ канал @opendataam)

#opendata #stateofopendata #armenia