Продолжая рассказывать про применение ИИ агентов для разработки, после экспериментов на не самом критичном коде я добрался до обновления реестра дата каталогов в Dateno и могу сказать что результаты пока что хорошие.
Вплоть до того что ИИ агент способен сформировать карточку дата каталога просто передав ему ссылку и задав промпт сгенерировать его описание. Это работает, во многом, потому что уже есть больше 10 тысяч созданных карточек и поскольку есть чёткие спецификации схем ПО дата каталогов, самих описаний дата каталогов и тд.
Кроме того хорошо отрабатывают задачи которые:
- находят ошибки в метаданных дата каталогов
- находят и исправляют дубликаты записей
- обогащают карточки каталогов тематиками и тэгами
- исправляют геоклассификацию каталогов
- и многое другое что предполагает массовое исправление и обогащение данных
Лично для меня и Dateno это очень хорошая новость это означает что реестр (dateno.io/registry) можно вести теперь значительно меньшими личными усилиями.
В ближайшее время я сделаю очередное обновление реестра уже по итогам большого числа итераций обновления метаданных и качество реестра существенно вырастет. А оно влияет и на индекс Dateno и на сам продукт реестра дата каталогов.
P.S. Тут я описываю внутренности происходящего в Dateno, которым я занимаюсь как основным проектом и продуктом. А новости проекта всегда можно читать в LinkedIn
#opendata #datacatalogs #ai #dev #datatools
Вплоть до того что ИИ агент способен сформировать карточку дата каталога просто передав ему ссылку и задав промпт сгенерировать его описание. Это работает, во многом, потому что уже есть больше 10 тысяч созданных карточек и поскольку есть чёткие спецификации схем ПО дата каталогов, самих описаний дата каталогов и тд.
Кроме того хорошо отрабатывают задачи которые:
- находят ошибки в метаданных дата каталогов
- находят и исправляют дубликаты записей
- обогащают карточки каталогов тематиками и тэгами
- исправляют геоклассификацию каталогов
- и многое другое что предполагает массовое исправление и обогащение данных
Лично для меня и Dateno это очень хорошая новость это означает что реестр (dateno.io/registry) можно вести теперь значительно меньшими личными усилиями.
В ближайшее время я сделаю очередное обновление реестра уже по итогам большого числа итераций обновления метаданных и качество реестра существенно вырастет. А оно влияет и на индекс Dateno и на сам продукт реестра дата каталогов.
P.S. Тут я описываю внутренности происходящего в Dateno, которым я занимаюсь как основным проектом и продуктом. А новости проекта всегда можно читать в LinkedIn
#opendata #datacatalogs #ai #dev #datatools
GitHub
GitHub - commondataio/dataportals-registry: Registry of data portals, catalogs, data repositories including data catalogs dataset…
Registry of data portals, catalogs, data repositories including data catalogs dataset and catalog description standard - commondataio/dataportals-registry
✍8❤3🔥3🎉2
Короткий текст The fate of “small” open source где автор рассказывает о будущей печальной судьбе программных библиотек на примере свой библиотеки blob-util и того что ИИ агенты не предлагают использовать её, а автоматически генерируют код.
Это, кстати, довольно таки важная тема что по мере прогресс ИИ инструменты чаще всего игнорируют не самые популярные библиотеки для ПО и каждый раз плодят бесконечное число кода. Можно, конечно, в запросе к ИИ агенту поставить задачу на использование конкретной библиотеки, но это не то что является поведением по умолчанию.
Итоговые изменения пока малопредсказуемы, но вероятность того что многие библиотеки кода будут быстро устаревать весьма вероятно.
И тут я бы ещё добавил что еще одно важное возможное изменение - это применение LLM для переписывания ПО с блокирующими лицензиями на открытые. Например, есть открытый продукт с кодом на GPL или AGPL который Вам надо интегрировать в свой продукт. Подключаете LLM которое переписывает полностью код так чтобы не доказать что он использовался и у Вас на руках появляется продукт под более разрешающей лицензии и с тем же открытым кодом.
Похоже на реалистичный сценарий?
#opensource #ai #llm
Это, кстати, довольно таки важная тема что по мере прогресс ИИ инструменты чаще всего игнорируют не самые популярные библиотеки для ПО и каждый раз плодят бесконечное число кода. Можно, конечно, в запросе к ИИ агенту поставить задачу на использование конкретной библиотеки, но это не то что является поведением по умолчанию.
Итоговые изменения пока малопредсказуемы, но вероятность того что многие библиотеки кода будут быстро устаревать весьма вероятно.
И тут я бы ещё добавил что еще одно важное возможное изменение - это применение LLM для переписывания ПО с блокирующими лицензиями на открытые. Например, есть открытый продукт с кодом на GPL или AGPL который Вам надо интегрировать в свой продукт. Подключаете LLM которое переписывает полностью код так чтобы не доказать что он использовался и у Вас на руках появляется продукт под более разрешающей лицензии и с тем же открытым кодом.
Похоже на реалистичный сценарий?
#opensource #ai #llm
Read the Tea Leaves
The fate of “small” open source
By far the most popular npm package I’ve ever written is blob-util, which is ~10 years old and still gets 5+ million weekly downloads. It’s a small collection of utilities for working w…
🤔7😢3❤2🌚2
This media is not supported in your browser
VIEW IN TELEGRAM
И в продолжение про PlotSet, альтернативное отображение с помощью кода сгененированного одним из ИИ агентов по визуализации структуры российского бюджета.
Уточнение, цифры я не перепроверял, хотя они похожи на достоверные. Косяки тоже есть, если делать как есть минимальными усилиями. Похоже на то что умеет делать PlotSet, но с открытым кодом и не такое красивое.
#ai #dataviz
Уточнение, цифры я не перепроверял, хотя они похожи на достоверные. Косяки тоже есть, если делать как есть минимальными усилиями. Похоже на то что умеет делать PlotSet, но с открытым кодом и не такое красивое.
#ai #dataviz
👍4❤🔥2