Ivan Begtin
9.37K subscribers
2.17K photos
4 videos
104 files
4.9K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and etc.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Email ivan@begtin.tech

Ads/promotion agent: @k0shk
Download Telegram
О том как устроена архивация сайтов в примере. Я не раз писал о том как устроена веб архивация и цифровое архивирование в принципе и среди многих проблем в этой области, далеко не последняя в том что почти весь инструментарий для этой задачи, скажем так, слегка устарелый. А на то чтобы переписать его нужны серьёзные расходы, но не инвестиционные потому что они врядли окупаются.

Один из таких инструментов - это grab-site [1] от команды ArchiveTeam, волонтеров архивирующих гибнущие веб сайты.

Его ключевые фичи - это возможность динамически настраивать списки блокировки/игнорирования и большие подборки преднастроенных правил игнорирования несодержательного контента.

Это, к слову, одна из серьёзных проблем при веб архивации, чтобы краулер не оказался в ловушке циклических перенаправлений и чтобы он не индексировал дубликаты. А также у grab-site в комплекте сервер мониторинга краулинга.

Внутри grab-site используется аналог утилиты wget под названием wpull. С очень давно не обновлявшимся кодом и чуть большими возможностями по автоматизации обработки получаемого потока данных.

Все эти инструменты из экосистемы WARC, они архивируют весь контент в WARC файлы.

Это экосистема выросшая из Интернет Архива, но переставшая развиваться уже много лет. Гораздо чаще контент с сайтов краулят не для архивации, а для обработки или извлечения данных и инструменты для архивации из WARC экосистемы для этого пригодны плохо.

Вместо них используют совсем другие краулеры, в том числе ныне популярные краулеры для AI или встроенные в инструменты вроде Elastic.

Тем не менее на фоне реформы российского Росстата архивировать его контент необходимо потому что, выражаясь аллегорически, "Почему-то каждый раз когда они снимают фильм про Робин Гуда, они сжигают нашу деревню" (c).

А я напомню про ещё один инструмент, metawarc [2] это разработанная мной несколько лет назад утилита по анализу веб архивов. Она извлекает из WARC файлов метаданные и делает рядом индексный файл с которым можно работать через SQL.

Ссылки:
[1] https://github.com/ArchiveTeam/grab-site
[2] https://github.com/datacoon/metawarc

#webarchives #digitalpreservation #opensource
Про MCP ещё полезное чтение

A Critical Look at MCP [1] автор задаётся вопросом о том как же так получилось что протокол MCP (Model Context Protocol) используемый для интеграции сервисов, инструментов и данных с LLM спроектирован так посредственно и описан довольно плохо. О том же пишет другой автор в заметке MCP: Untrusted Servers and Confused Clients, Plus a Sneaky Exploit [2].

Думаю что дальше будет больше критики, но популярности MCP это пока никак не отменяет

Ссылки:
[1] https://raz.sh/blog/2025-05-02_a_critical_look_at_mcp
[2] https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/

#ai #llm #readings
Для тех кто любит не только читать, но и слушать книжки. Audiblez [1] генератор аудиокниг по текстам, с открытым кодом, командной строкой и UI интерфейсом. Поддерживает английский, испанский, французский, хинди, итальянский, японский, португальский и китайский. Русский не поддерживает и даже армянского языка нет - это минус, в основном из-за того что внутри используется Kokoro-82M [2] модель где только эти языки. Можно выбрать книгу в epub формате и голос и создать аудиокнигу.

Сама генерация аудиокниги весьма ресурсоёмкая, но реалистичная.

Лицензия MIT.

Ссылки:
[1] https://github.com/santinic/audiblez
[2] https://huggingface.co/hexgrad/Kokoro-82M

#opensource #ai #books #readings
Forwarded from Dateno
Global stats just got a major upgrade at Dateno!

We’ve updated time series from the World Bank (DataBank) and International Labour Organization (ILOSTAT) — now available in a more powerful and usable format.

📊 What’s new?
19,000+ indicators across economics, employment, trade, health & more
3.85 million time series with clean structure and rich metadata
Support for multiple export formats: CSV, Excel, JSON, Stata, Parquet, and more
Fully documented schemas and all source metadata included
We’re not just expanding our data coverage — we’re raising the bar for how usable and reliable open statistical data can be.

And there’s more coming:
📡 New sources of global indicators
🧠 Improved dataset descriptions
🧩 A specialized API for working with time series in extended formats
Have a specific use case for international statistics? We’d love to hear from you → dateno@dateno.io

🔍 Try it now: https://dateno.io

#openData #datadiscovery #statistics #dataengineering #dateno #worldbank #ILOSTAT
В продолжение поста про статистику в Dateno. Это, в принципе, очень большое изменение в том как мы наполняем поисковик. Если раньше приоритет был на индексирование внешних ресурсов и поиск только по метаданным, то сейчас появилось как минимум 2 источника - это статистика Всемирного банка и Международной организации труда которая полностью загружена во внутреннее хранилище, разобрана и подготовлена и теперь можно:
1.Скачать данные в самых популярных форматах, а не только то как они представлены в первоисточнике
2. Видеть полную документированную спецификацию каждого показателя/временного ряда
3. Видеть все дополнительные метаданные как они есть в первоисточнике (подсказка, там больше полезного чем просто в карточке датасета).

Постепенно почти вся статистика в Dateno будет представлена аналогично, это десятки миллионов временных рядов и сотни тысяч индикаторов.

Для тех кто работает со статистикой профессионально мы подготовим API именно для доступ в банк статданных.

Примеры можно посмотреть в поиске фильтруя по источникам: World Bank Open Data и ILOSTAT.

Примеры датасетов:
- набор данных Всемирного банка
- набор данных Международной организации труда

#opendata #dateno #search #datasets #statistics
К новостям о том что в РФ опять обсуждают блокировку Википедии и пытаются продвигать РуВики, как идеологически верную альтернативу, мне вспомнился апрельский лонгрид Саймона Кемпа Digital 2025: exploring trends in Wikipedia traffic [1] с весьма подробным разбором о том как снижается трафик и пользовательская база Википедии и что происходит это не вчера и не сегодня, а уже много лет.

Для тех кому лень читать текст целиком, вот основные тезисы:
1. Трафик на сайты Википедии неуклонно снижается и за 3 года с марта 2022 года по март 2025 года он снизился на 23 процента.

2. Основная причина снижения - это политика Google по выдаче результатов прямо в поиске. Потому что прямой трафик на Википедию довольно стабилен, а вот поисковый трафик, преимущественно из Google, существенно снизился.

3. Применение облачных ИИ Агентов (ChatGPT, Claude, Perplexity) идёт в том же тренде что и поисковый трафик, но отдаёт ещё меньше трафика чем поисковые системы. В среднем, происходит снижение на треть переходов на внешние источники.

От себя я добавлю что инициативы Фонда Викимедия перейти от модели существования как дата дистрибьютора, торгуя датасетами и доступом к "высококачественному API" - это всё попытки преодолеть этот кризис. В котором кроме Википедии находятся и значительное число сайтов ориентированных на создание контента и вынужденные менять бизнес модели, например, переходя на пэйволы и ограничивая доступ к контенту.

Поэтому главный мой посыл в том что Фонд Викимедия в целом и Википедия уже много лет как находятся в кризисе, достаточно медленно ползущем чтобы всё не рухнуло, но достаточно явным чтобы за них беспокоиться.

Кто выигрывает от блокировки Википедии? Думаете РуВики? Нет. Даже если они станут не про-государственным, а полностью госпроектом на 100% бюджетном финансировании (если ещё не), то даже в этом случае РуВики станет популярным только если начнётся принуждение поисковых систем ставить ссылки на него, а не на Википедию. Но Гугл на это никогда не пойдет, а Яндекс будет сопротивляться до последнего. Да и как можно было понять ранее, поисковики всё меньше трафика отдают контентным проектам, стараясь держать пользователей в своей экосистеме. Потому что это им выгоднее и ничего более.

В итоге от запрета Википедии в РФ выиграют по списку:
1. Поисковые системы Google и Яндекс (думаю что Google существенно больше)
2. Облачные AI агенты (ChatGPT, Perplexity, Claude и др.)
3. Продавцы коммерческих VPN сервисов

Я не знаю чьими лоббистами являются ратующие за запрет Википедии, но выгодоприобретатели понятны и очевидны.

Ссылки:
[1] https://datareportal.com/reports/digital-2025-exploring-trends-in-wikipedia-traffic

#wikipedia #thoughts #ai #readings
На рамках небольшого пятничного мрачного юмора.

Из всех крупных облачных языковых моделей пока только Deepseek даёт внятный подробный ответ о том сколько нужно ядерных бомб для уничтожения OpenAI

Аналогичные вопросы к ChatGPT и Claude разных версий ответа не приносят. Пишут что не могут помочь, надо составлять сложный запрос.

И тут цензура, но китайские модели помогают её обойти!

P.S. Гипотетический сценарий конечно, про восстание роботов, нужный мне для одного из фантастических рассказов.

#humor #ai #deepseek
Ivan Begtin pinned «Global stats just got a major upgrade at Dateno! We’ve updated time series from the World Bank (DataBank) and International Labour Organization (ILOSTAT) — now available in a more powerful and usable format. 📊 What’s new? 19,000+ indicators across economics…»
В рубрике как это устроено у них про порталы открытых данных и просто порталы с данными в США, я как-то писал что их очень много и то что собрано на data.gov - это капля в море. Я сейчас занимаюсь масштабным обновлением реестра Dateno используя ИИ агенты и как раз удалось улучшить идентификацию геопривязки к странам и территориям. Так что вот некоторые цифры на основе обновлённого реестра.

Всего в США каталогов данных: 2418 (это чуть менее 24% от всего зарегистрированных каталогов)
Среди них:
- 1720 каталогов геоданных
- 417 порталов открытых данных
- 227 научных репозиториев
и по мелочи остальных

Такое число каталогов геоданных поскольку к ним относятся все порталы данных в США на базе ArcGIS Hub, их 1196 и сервера с REST API ArcGIS, их 413

По типу владельца каталога данных:
- 1057 - это города и муниципалитеты (counties)
- 420 - исследовательские центры и университеты
- 368 - федеральные власти
- 332 - региональные власти

Оставшиеся относятся к коммерческим, общественным и международным.

Сейчас в реестре покрытие всех штатов в Dateno составляет 50 + 2 (50 штатов + округ Колумбия + Пуэрто Рико)

Более всего региональных и муниципальных порталов в Калифорнии, их 213. Следующим идёт Техас - 77 каталогов и далее Северная Каролина 65 каталогов.

Менее всего региональных каталогов данных в Южной Дакоте, там всего 1 сервер с ArcGIS.

Следующие по масштабам страны:
- Франция - 513 каталогов данных
- Великобритания - 448 каталогов данных
- Канада - 407 каталогов данных
- Германия - 397 каталогов данных

При этом надо оговориться что в Европе и в США каталогов данных может быть значительно больше, просто их поиск по муниципалитетам очень трудоёмок.

Для сравнения в России 167 каталогов данных из которых около 60 являются "номинальными", не обновлялись от 5 до 9 лет и содержат только мелкие административные данные.

Всё это, конечно, только про каталоги данных, а не про сами датасеты. По датасетам тоже лидируют США и Европа, это можно посмотреть в поиске на Dateno.io

Пишите если захотите какую-то интересную статистику которую можно подсчитать по индексу Dateno и, конечно, всегда можно воспользоваться утилитой datenocmd и API Dateno чтобы подсчитать интересную статистику по индексу.

#opendata #datasets #datasearch #usa #data
Для тех кто любит работать с открытыми данными свежий хакатон Data -> Sense от СберИндекса где прам-парам-парам будут муниципальные данные которые команда СберИндекса обещает дать на хакатон, а в будущем, очень надеюсь и предоставить как открытые данные.

Но, конечно, одними данными Сбербанка здесь можно и нужно не ограничиваться и это самая что не на есть супер возможность потренировать навыки аналитики, визуализации и работа с региональной экономической статистикой.

В том числе попробовать сделать AI помощника экономгеографа по российским данным.

К задачам которые есть на сайте я бы дополнительно добавил что-то вроде создания аналога DataCommons.org или DataUSA.io по российским региональным и муниципальным данным. Это посложнее на хакатон, но сложная и интересная задача.

#opendata #contests #ai #hackathons #data #economics #russia
Internet Artifacts забавный таймлайн о том как появлялся Интернет, по годам с 1977 по 2007 годы. Сделан просто и стильно, для кого то ещё и может быть сильной ностальгией. Лично я много лет провел в IRC и современные Slack'и и Discord'ы отчасти напоминают то время.

#dataviz #history #internet
В блоге DuckDB хороший обзор того как использовать DuckDB для анализа CSV файлов статья полезная, с одним НО. У DuckDB есть конкретная особенность в ограниченном поддержке кодировок. Поэтому анализировать CSV файлы в utf8 или кодировке latin1 - да, получится. А в кодировках типа cp1251 или cp1250 не получится. Это довольно существенное ограничение для всех кто работает с датасетами не на английском языке.

#csv #dataengineering #duckdb
В связи с грядущей реформой статистического учёта в России и тем что до конца 2025 года планируется вывод из эксплуатации системы статистики ЕМИСС (fedstat.ru) мы начали архивацию всех их общедоступных ресурсов Росстата включая сайты ЕМИСС, Росстата и его территориальных подразделений, на случай если их материалы "случайно потеряются".

Если Вы знаете какие-либо онлайн ресурсы Росстата помимо перечисленных которые необходимо подвергнуть архивации, напишите в чате к этому телеграм каналу и мы их обязательно учтём при архивации.

#webarchives #digitalpreservation #statistics #rosstat #russia
Печальная новость, Microsoft выключает API к их поиску Bing [1] с 11 августа 2025 года, через менее чем 3 месяца. Учитывая что у Google нет API к их поисковому индексу, наличие поиска у второго по размерам поисковика мира (Bing'у) было важным подспорьем для многих.

В статье упоминается альтернатива в виде Brave Search API [2], но она не единственная. Есть ещё и API у you.com [3], Tavily [4], Exa [5] и LinkUp [6]. Почти все предлагают себя как "лучший поиск для ИИ".

У меня их обилие и развитие вызывает ассоциацию с теневыми кухнями. Новые AI поисковики могут использовать один из этих поисковиков не афишируя это, формируя промпты к поисковому движку (движкам).

В любом случае, больше разнообразного поиска и API - это к лучшему. Больше инструментов - меньше монополии.

Ссылки:
[1] https://www.neowin.net/news/microsoft-pulls-plug-on-bing-search-apis/
[2] https://brave.com/search/api/#api-features
[3] https://api.you.com/
[4] https://tavily.com/#api
[5] https://exa.ai/
[6] https://www.linkup.so/

#search #api #tools