Запоздалая новость российской статистики, система ЕМИСС (fedstat.ru) будет выведена из эксплуатации до 31 декабря 2025 года. Формулировки совместного приказа Минцифры и Росстата упоминают что именно до, а то есть в любой день до конца этого года, хоть завтра.
Что важно:
1. Этого приказа нет на сайте Минцифры России [1]. Единственный приказ опубликованный приказ с этим номером 1138 есть за 2021 год и нет на сайте официального опубликования [2].
2. Этого приказа нет на сайте Росстата [3] (или не находится и сильно далеко спрятан) и точно нет на сервере официального опубликования [4]
Откуда такая таинственность и почему он есть только в Консультант Плюс?
А самое главное, что заменит ЕМИСС? И существует ли уже это что-то
Ссылки:
[1] https://digital.gov.ru/documents
[2] http://publication.pravo.gov.ru/search/foiv290?pageSize=30&index=1&SignatoryAuthorityId=1ac1ee36-2621-4c4f-917f-9bffc35d4671&EoNumber=1138&DocumentTypes=2dddb344-d3e2-4785-a899-7aa12bd47b6f&PublishDateSearchType=0&NumberSearchType=0&DocumentDateSearchType=0&JdRegSearchType=0&SortedBy=6&SortDestination=1
[3] https://rosstat.gov.ru/search?q=%D0%9F%D1%80%D0%B8%D0%BA%D0%B0%D0%B7+673&date_from=01.01.2024&content=on&date_to=31.12.2024&search_by=all&sort=relevance
[4] http://publication.pravo.gov.ru/search/foiv296?pageSize=30&index=1&SignatoryAuthorityId=24a476cb-b5ae-46c7-b46a-194c8ee1e29a&EoNumber=673&&PublishDateSearchType=0&NumberSearchType=0&DocumentDateSearchType=0&JdRegSearchType=0&SortedBy=6&SortDestination=1
#opendata #closeddata #russia #statistics
Что важно:
1. Этого приказа нет на сайте Минцифры России [1]. Единственный приказ опубликованный приказ с этим номером 1138 есть за 2021 год и нет на сайте официального опубликования [2].
2. Этого приказа нет на сайте Росстата [3] (или не находится и сильно далеко спрятан) и точно нет на сервере официального опубликования [4]
Откуда такая таинственность и почему он есть только в Консультант Плюс?
А самое главное, что заменит ЕМИСС? И существует ли уже это что-то
Ссылки:
[1] https://digital.gov.ru/documents
[2] http://publication.pravo.gov.ru/search/foiv290?pageSize=30&index=1&SignatoryAuthorityId=1ac1ee36-2621-4c4f-917f-9bffc35d4671&EoNumber=1138&DocumentTypes=2dddb344-d3e2-4785-a899-7aa12bd47b6f&PublishDateSearchType=0&NumberSearchType=0&DocumentDateSearchType=0&JdRegSearchType=0&SortedBy=6&SortDestination=1
[3] https://rosstat.gov.ru/search?q=%D0%9F%D1%80%D0%B8%D0%BA%D0%B0%D0%B7+673&date_from=01.01.2024&content=on&date_to=31.12.2024&search_by=all&sort=relevance
[4] http://publication.pravo.gov.ru/search/foiv296?pageSize=30&index=1&SignatoryAuthorityId=24a476cb-b5ae-46c7-b46a-194c8ee1e29a&EoNumber=673&&PublishDateSearchType=0&NumberSearchType=0&DocumentDateSearchType=0&JdRegSearchType=0&SortedBy=6&SortDestination=1
#opendata #closeddata #russia #statistics
Некоторые мысли вслух по поводу технологических трендов последнего времени:
1. Возвращение профессионализации в ИТ.
Как следствие массового применения LLM для разработки и кризиса "рынка джуниоров" в ИТ. LLM ещё не скоро научатся отладке кода и в этом смысле не смогут заменить senior и middle разработчиков, а вот про массовое исчезновение вакансий и увольнения младших разработчиков - это всё уже с нами. Плохо ли это или хорошо? Это плохо для тех кто пошёл в ИТ не имея реального интереса к профессиональной ИТ разработке, хорошо для тех для кого программная инженерия - это основная специальность и очень хорошо для отраслевых специалистов готовых осваивать nocode и lowcode инструменты.
Перспектива: прямо сейчас
2. Регистрация и аттестация ИИ агентов и LLM.
В случае с ИИ повторяется история с развитием Интернета, когда технологии менялись значительно быстрее чем регуляторы могли/способны реагировать. Сейчас есть ситуация с высокой степенью фрагментации и демократизации доступа к ИИ агентам, даже при наличии очень крупных провайдеров сервисов, у них множество альтернатив и есть возможность использовать их на собственном оборудовании. Но это не значит что пр-ва по всему миру не алчут ограничить и регулировать их применение. Сейчас их останавливает только непрерывный поток технологических изменений. Как только этот поток хоть чуть-чуть сбавит напор, неизбежен приход регуляторов и введение аттестации, реестров допустимых LLM/ИИ агентов и тд. Всё это будет происходить под знамёнами: защиты перс. данных, защиты прав потребителей, цензуры (защиты от недопустимого контента), защиты детей, защиты пациентов, национальной безопасности и тд.
Перспектива: 1-3 года
3. Резкая смена ландшафта поисковых систем
Наиболее вероятный кандидат Perplexity как новый игрок, но может и Bing вынырнуть из небытия, теоретически и OpenAI и Anthropic могут реализовать полноценную замену поиску Google. Ключевое тут в контроле экосистем и изменении интересов операторов этих экосистем. А экосистем, по сути, сейчас три: Apple, Google и Microsoft. Понятно что Google не будет заменять свой поисковик на Android'е на что-либо ещё, но Apple вполне может заменить поиск под давлением регулятора и не только и пока Perplexity похоже на наиболее вероятного кандидата. Но, опять же, и Microsoft может перезапустить Bing на фоне этих событий.
Перспектива: 1 год
4. Поглощение ИИ-агентами корпоративных BI систем
Применение больших облачных ИИ агентов внутри компаний ограничено много чем, коммерческой тайной, персональными данными и тд., но "внутри" компаний могут разворачиваться собственные LLM системы которые будут чем-то похожи на корпоративные BI / ETL продукты, они тоже будут состыкованы со множеством внутренних источников данных. Сейчас разработчики корпоративных BI будут пытаться поставлять продукты с подключением к LLM/встроенным LLM. В перспективе всё будет наоборот. Будут продукты в виде корпоративных LLM с функциями BI.
Перспектива: 1-2 года
5. Сжимание рынка написания текстов / документации
Рынок документирования ИТ продукта если ещё не схлопнулся, то резко сжимается уже сейчас, а люди занимавшиеся тех писательством теперь могут оказаться без работы или с другой работой. В любом случае - это то что не просто поддаётся автоматизации, а просто напрашивающееся на неё. Всё больше стартапов и сервисов которые создадут Вам качественную документацию по Вашему коду, по спецификации API, по бессвязанным мыслям и многому другому.
Перспектива: прямо сейчас
#ai #thinking #reading #thoughts
1. Возвращение профессионализации в ИТ.
Как следствие массового применения LLM для разработки и кризиса "рынка джуниоров" в ИТ. LLM ещё не скоро научатся отладке кода и в этом смысле не смогут заменить senior и middle разработчиков, а вот про массовое исчезновение вакансий и увольнения младших разработчиков - это всё уже с нами. Плохо ли это или хорошо? Это плохо для тех кто пошёл в ИТ не имея реального интереса к профессиональной ИТ разработке, хорошо для тех для кого программная инженерия - это основная специальность и очень хорошо для отраслевых специалистов готовых осваивать nocode и lowcode инструменты.
Перспектива: прямо сейчас
2. Регистрация и аттестация ИИ агентов и LLM.
В случае с ИИ повторяется история с развитием Интернета, когда технологии менялись значительно быстрее чем регуляторы могли/способны реагировать. Сейчас есть ситуация с высокой степенью фрагментации и демократизации доступа к ИИ агентам, даже при наличии очень крупных провайдеров сервисов, у них множество альтернатив и есть возможность использовать их на собственном оборудовании. Но это не значит что пр-ва по всему миру не алчут ограничить и регулировать их применение. Сейчас их останавливает только непрерывный поток технологических изменений. Как только этот поток хоть чуть-чуть сбавит напор, неизбежен приход регуляторов и введение аттестации, реестров допустимых LLM/ИИ агентов и тд. Всё это будет происходить под знамёнами: защиты перс. данных, защиты прав потребителей, цензуры (защиты от недопустимого контента), защиты детей, защиты пациентов, национальной безопасности и тд.
Перспектива: 1-3 года
3. Резкая смена ландшафта поисковых систем
Наиболее вероятный кандидат Perplexity как новый игрок, но может и Bing вынырнуть из небытия, теоретически и OpenAI и Anthropic могут реализовать полноценную замену поиску Google. Ключевое тут в контроле экосистем и изменении интересов операторов этих экосистем. А экосистем, по сути, сейчас три: Apple, Google и Microsoft. Понятно что Google не будет заменять свой поисковик на Android'е на что-либо ещё, но Apple вполне может заменить поиск под давлением регулятора и не только и пока Perplexity похоже на наиболее вероятного кандидата. Но, опять же, и Microsoft может перезапустить Bing на фоне этих событий.
Перспектива: 1 год
4. Поглощение ИИ-агентами корпоративных BI систем
Применение больших облачных ИИ агентов внутри компаний ограничено много чем, коммерческой тайной, персональными данными и тд., но "внутри" компаний могут разворачиваться собственные LLM системы которые будут чем-то похожи на корпоративные BI / ETL продукты, они тоже будут состыкованы со множеством внутренних источников данных. Сейчас разработчики корпоративных BI будут пытаться поставлять продукты с подключением к LLM/встроенным LLM. В перспективе всё будет наоборот. Будут продукты в виде корпоративных LLM с функциями BI.
Перспектива: 1-2 года
5. Сжимание рынка написания текстов / документации
Рынок документирования ИТ продукта если ещё не схлопнулся, то резко сжимается уже сейчас, а люди занимавшиеся тех писательством теперь могут оказаться без работы или с другой работой. В любом случае - это то что не просто поддаётся автоматизации, а просто напрашивающееся на неё. Всё больше стартапов и сервисов которые создадут Вам качественную документацию по Вашему коду, по спецификации API, по бессвязанным мыслям и многому другому.
Перспектива: прямо сейчас
#ai #thinking #reading #thoughts
Хороший разбор в виде дата истории темы зависимости даты рождения и даты смерти в блоге The Pudding [1]. Без какой-то единой визуализации, но со множеством графиков иллюстрирующих изыскания автора и выводы о том что да, вероятность смерти у человека выше в день рождения и близкие к нему дни и это превышение выше статистической погрешности.
Собственно это не первое и, наверняка, не последнее исследование на эту тему. В данном случае автор использовал данные полученные у властей Массачусеца с помощью запроса FOIA о 57 010 лицах.
Там же есть ссылки на исследования с большими выборками, но теми же результатами.
Так что берегите себя и внимательнее относитесь к своим дням рождения, дата эта важная, игнорировать её никак нельзя.
P.S. Интересно что данные в виде таблиц со значениями дата рождения и дата смерти - это точно не персональные данные. Ничто не мешает госорганам не только в США их раскрывать, но почему-то они, всё таки, редкость.
Ссылки:
[1] https://pudding.cool/2025/04/birthday-effect/
#opendata #dataviz #curiosity #statistics
Собственно это не первое и, наверняка, не последнее исследование на эту тему. В данном случае автор использовал данные полученные у властей Массачусеца с помощью запроса FOIA о 57 010 лицах.
Там же есть ссылки на исследования с большими выборками, но теми же результатами.
Так что берегите себя и внимательнее относитесь к своим дням рождения, дата эта важная, игнорировать её никак нельзя.
P.S. Интересно что данные в виде таблиц со значениями дата рождения и дата смерти - это точно не персональные данные. Ничто не мешает госорганам не только в США их раскрывать, но почему-то они, всё таки, редкость.
Ссылки:
[1] https://pudding.cool/2025/04/birthday-effect/
#opendata #dataviz #curiosity #statistics
Как читать отчёты Счетной палаты в РФ ? Не надо читать финальные выводы и довольно бесполезно читать вступление. Всё самое главное посередине там где изложение фактов. Какие-то факты могут отсутствовать, может не быть иногда глубины, но те что приведены, как правило, достаточно точны.
История с ГАС Правосудие и потерей огромного объёма данных судебных решений именно тот случай [1]. Спасибо ребятам из Если быть точным за подробное изложение и анализ этой истории [2]. Единственно с чем я несогласен, а это не надо сотням людей использовать один парсер. Нужна была бы открытая база судебных решений которая когда-то была в Росправосудии. Парсер - это плохой путь, приводящий к массовому применении каптчи. Но создать ресурс с данными тоже непросто, его могут быстро заблокировать.
Однако в этой истории про ГАС Правосудие я хочу сделать акцент на 60+ миллиардах потраченных на эту систему денег, и даже не на то что их взломали, и это всячески скрывали. А на том у что у системы не было резервных копий.
И скажу я вам не тая, подозреваю что это не единственная российская государственная информационная система резервных копий к которых нет. И не появится если за это не будет последствий, а их похоже что нет.
И, конечно, данные по судебным делам - это самое что ни на есть общественное достояние, общественно значимые данные которые безусловно и безальтернативно должны были бы быть открытыми. Вместо того чтобы отреагировать на парсеры данных выкладкой датасетов для массовой выгрузки, сотрудники Суддепа много лет развлекались встраиванием каптчи на страницах сайта. А то есть на "вредительство" у них время и ресурсы были, а на создание архивных копий нет?
Ссылки:
[1] https://t.me/expertgd/12660
[2] https://t.me/tochno_st/518
#opendata #closeddata #theyfailed #russia
История с ГАС Правосудие и потерей огромного объёма данных судебных решений именно тот случай [1]. Спасибо ребятам из Если быть точным за подробное изложение и анализ этой истории [2]. Единственно с чем я несогласен, а это не надо сотням людей использовать один парсер. Нужна была бы открытая база судебных решений которая когда-то была в Росправосудии. Парсер - это плохой путь, приводящий к массовому применении каптчи. Но создать ресурс с данными тоже непросто, его могут быстро заблокировать.
Однако в этой истории про ГАС Правосудие я хочу сделать акцент на 60+ миллиардах потраченных на эту систему денег, и даже не на то что их взломали, и это всячески скрывали. А на том у что у системы не было резервных копий.
И скажу я вам не тая, подозреваю что это не единственная российская государственная информационная система резервных копий к которых нет. И не появится если за это не будет последствий, а их похоже что нет.
И, конечно, данные по судебным делам - это самое что ни на есть общественное достояние, общественно значимые данные которые безусловно и безальтернативно должны были бы быть открытыми. Вместо того чтобы отреагировать на парсеры данных выкладкой датасетов для массовой выгрузки, сотрудники Суддепа много лет развлекались встраиванием каптчи на страницах сайта. А то есть на "вредительство" у них время и ресурсы были, а на создание архивных копий нет?
Ссылки:
[1] https://t.me/expertgd/12660
[2] https://t.me/tochno_st/518
#opendata #closeddata #theyfailed #russia
Telegram
Эксперт по Госдуме
Я давно не писал про наш поисковик по данным Dateno, а там накопилось множество обновлений, надеюсь что вот-вот уже скоро смогу об этом написать. А пока приведу ещё пример в копилку задач как ИИ заменяет человека. Я много рассказывал про реестр дата каталогов который Dateno Registry dateno.io/registry, полезный для всех кто ищет не только данные, но и их источник. Этот реестр - это основа Dateno, в нём более 10 тысяч дата каталогов размеченных по разным характеристикам и с большими пробелами в описаниях. Откуда пробелы? потому что автоматизировать поиск источников удалось, а вот описание требует (требовало) много ручной работы.
Когда мы запускали Dateno на текущем реестре я оценивал трудоёмкость по его улучшению и повышении качества в полгода работы для пары человек вручную. Совсем немало скажу я вам, учитывая что этих людей ещё и надо обучить и
ещё надо контролировать качество работы и ещё и нужны инструменты чтобы всё это редактировать без ошибок.
В общем, чтобы долго не ходить, ИИ почти полностью справляется с этой задачей. Достаточно предоставить url сайта с каталогом данных и из него хорошо извлекаются все необходимые метаданные.
Для стартапа на данных - это очень заметное изменение. И это маленькая и теперь недорогая задача. После всех проверок можно будет значительно обновить реестр.
Кстати, о том зачем он нужен. Реестр каталогов данных точно нужен Dateno для индексации датасетов, но он же нужен и всем тем кто строит национальные порталы данных потому что позволяет агрегировать в него данные из всех национальных источников.
#opendata #dateno #datasets #dataengineering #llm #ai #dataunderstanding
Когда мы запускали Dateno на текущем реестре я оценивал трудоёмкость по его улучшению и повышении качества в полгода работы для пары человек вручную. Совсем немало скажу я вам, учитывая что этих людей ещё и надо обучить и
ещё надо контролировать качество работы и ещё и нужны инструменты чтобы всё это редактировать без ошибок.
В общем, чтобы долго не ходить, ИИ почти полностью справляется с этой задачей. Достаточно предоставить url сайта с каталогом данных и из него хорошо извлекаются все необходимые метаданные.
Для стартапа на данных - это очень заметное изменение. И это маленькая и теперь недорогая задача. После всех проверок можно будет значительно обновить реестр.
Кстати, о том зачем он нужен. Реестр каталогов данных точно нужен Dateno для индексации датасетов, но он же нужен и всем тем кто строит национальные порталы данных потому что позволяет агрегировать в него данные из всех национальных источников.
#opendata #dateno #datasets #dataengineering #llm #ai #dataunderstanding
Dateno
Dateno - datasets search engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.
О том как устроена архивация сайтов в примере. Я не раз писал о том как устроена веб архивация и цифровое архивирование в принципе и среди многих проблем в этой области, далеко не последняя в том что почти весь инструментарий для этой задачи, скажем так, слегка устарелый. А на то чтобы переписать его нужны серьёзные расходы, но не инвестиционные потому что они врядли окупаются.
Один из таких инструментов - это grab-site [1] от команды ArchiveTeam, волонтеров архивирующих гибнущие веб сайты.
Его ключевые фичи - это возможность динамически настраивать списки блокировки/игнорирования и большие подборки преднастроенных правил игнорирования несодержательного контента.
Это, к слову, одна из серьёзных проблем при веб архивации, чтобы краулер не оказался в ловушке циклических перенаправлений и чтобы он не индексировал дубликаты. А также у grab-site в комплекте сервер мониторинга краулинга.
Внутри grab-site используется аналог утилиты wget под названием wpull. С очень давно не обновлявшимся кодом и чуть большими возможностями по автоматизации обработки получаемого потока данных.
Все эти инструменты из экосистемы WARC, они архивируют весь контент в WARC файлы.
Это экосистема выросшая из Интернет Архива, но переставшая развиваться уже много лет. Гораздо чаще контент с сайтов краулят не для архивации, а для обработки или извлечения данных и инструменты для архивации из WARC экосистемы для этого пригодны плохо.
Вместо них используют совсем другие краулеры, в том числе ныне популярные краулеры для AI или встроенные в инструменты вроде Elastic.
Тем не менее на фоне реформы российского Росстата архивировать его контент необходимо потому что, выражаясь аллегорически, "Почему-то каждый раз когда они снимают фильм про Робин Гуда, они сжигают нашу деревню" (c).
А я напомню про ещё один инструмент, metawarc [2] это разработанная мной несколько лет назад утилита по анализу веб архивов. Она извлекает из WARC файлов метаданные и делает рядом индексный файл с которым можно работать через SQL.
Ссылки:
[1] https://github.com/ArchiveTeam/grab-site
[2] https://github.com/datacoon/metawarc
#webarchives #digitalpreservation #opensource
Один из таких инструментов - это grab-site [1] от команды ArchiveTeam, волонтеров архивирующих гибнущие веб сайты.
Его ключевые фичи - это возможность динамически настраивать списки блокировки/игнорирования и большие подборки преднастроенных правил игнорирования несодержательного контента.
Это, к слову, одна из серьёзных проблем при веб архивации, чтобы краулер не оказался в ловушке циклических перенаправлений и чтобы он не индексировал дубликаты. А также у grab-site в комплекте сервер мониторинга краулинга.
Внутри grab-site используется аналог утилиты wget под названием wpull. С очень давно не обновлявшимся кодом и чуть большими возможностями по автоматизации обработки получаемого потока данных.
Все эти инструменты из экосистемы WARC, они архивируют весь контент в WARC файлы.
Это экосистема выросшая из Интернет Архива, но переставшая развиваться уже много лет. Гораздо чаще контент с сайтов краулят не для архивации, а для обработки или извлечения данных и инструменты для архивации из WARC экосистемы для этого пригодны плохо.
Вместо них используют совсем другие краулеры, в том числе ныне популярные краулеры для AI или встроенные в инструменты вроде Elastic.
Тем не менее на фоне реформы российского Росстата архивировать его контент необходимо потому что, выражаясь аллегорически, "Почему-то каждый раз когда они снимают фильм про Робин Гуда, они сжигают нашу деревню" (c).
А я напомню про ещё один инструмент, metawarc [2] это разработанная мной несколько лет назад утилита по анализу веб архивов. Она извлекает из WARC файлов метаданные и делает рядом индексный файл с которым можно работать через SQL.
Ссылки:
[1] https://github.com/ArchiveTeam/grab-site
[2] https://github.com/datacoon/metawarc
#webarchives #digitalpreservation #opensource
Про MCP ещё полезное чтение
A Critical Look at MCP [1] автор задаётся вопросом о том как же так получилось что протокол MCP (Model Context Protocol) используемый для интеграции сервисов, инструментов и данных с LLM спроектирован так посредственно и описан довольно плохо. О том же пишет другой автор в заметке MCP: Untrusted Servers and Confused Clients, Plus a Sneaky Exploit [2].
Думаю что дальше будет больше критики, но популярности MCP это пока никак не отменяет
Ссылки:
[1] https://raz.sh/blog/2025-05-02_a_critical_look_at_mcp
[2] https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/
#ai #llm #readings
A Critical Look at MCP [1] автор задаётся вопросом о том как же так получилось что протокол MCP (Model Context Protocol) используемый для интеграции сервисов, инструментов и данных с LLM спроектирован так посредственно и описан довольно плохо. О том же пишет другой автор в заметке MCP: Untrusted Servers and Confused Clients, Plus a Sneaky Exploit [2].
Думаю что дальше будет больше критики, но популярности MCP это пока никак не отменяет
Ссылки:
[1] https://raz.sh/blog/2025-05-02_a_critical_look_at_mcp
[2] https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/
#ai #llm #readings
raz.sh
Raz Blog
Для тех кто любит не только читать, но и слушать книжки. Audiblez [1] генератор аудиокниг по текстам, с открытым кодом, командной строкой и UI интерфейсом. Поддерживает английский, испанский, французский, хинди, итальянский, японский, португальский и китайский. Русский не поддерживает и даже армянского языка нет - это минус, в основном из-за того что внутри используется Kokoro-82M [2] модель где только эти языки. Можно выбрать книгу в epub формате и голос и создать аудиокнигу.
Сама генерация аудиокниги весьма ресурсоёмкая, но реалистичная.
Лицензия MIT.
Ссылки:
[1] https://github.com/santinic/audiblez
[2] https://huggingface.co/hexgrad/Kokoro-82M
#opensource #ai #books #readings
Сама генерация аудиокниги весьма ресурсоёмкая, но реалистичная.
Лицензия MIT.
Ссылки:
[1] https://github.com/santinic/audiblez
[2] https://huggingface.co/hexgrad/Kokoro-82M
#opensource #ai #books #readings
GitHub
GitHub - santinic/audiblez: Generate audiobooks from e-books
Generate audiobooks from e-books. Contribute to santinic/audiblez development by creating an account on GitHub.
Forwarded from Dateno
Global stats just got a major upgrade at Dateno!
We’ve updated time series from the World Bank (DataBank) and International Labour Organization (ILOSTAT) — now available in a more powerful and usable format.
📊 What’s new?
19,000+ indicators across economics, employment, trade, health & more
3.85 million time series with clean structure and rich metadata
Support for multiple export formats: CSV, Excel, JSON, Stata, Parquet, and more
Fully documented schemas and all source metadata included
We’re not just expanding our data coverage — we’re raising the bar for how usable and reliable open statistical data can be.
And there’s more coming:
📡 New sources of global indicators
🧠 Improved dataset descriptions
🧩 A specialized API for working with time series in extended formats
Have a specific use case for international statistics? We’d love to hear from you → dateno@dateno.io
🔍 Try it now: https://dateno.io
#openData #datadiscovery #statistics #dataengineering #dateno #worldbank #ILOSTAT
We’ve updated time series from the World Bank (DataBank) and International Labour Organization (ILOSTAT) — now available in a more powerful and usable format.
📊 What’s new?
19,000+ indicators across economics, employment, trade, health & more
3.85 million time series with clean structure and rich metadata
Support for multiple export formats: CSV, Excel, JSON, Stata, Parquet, and more
Fully documented schemas and all source metadata included
We’re not just expanding our data coverage — we’re raising the bar for how usable and reliable open statistical data can be.
And there’s more coming:
📡 New sources of global indicators
🧠 Improved dataset descriptions
🧩 A specialized API for working with time series in extended formats
Have a specific use case for international statistics? We’d love to hear from you → dateno@dateno.io
🔍 Try it now: https://dateno.io
#openData #datadiscovery #statistics #dataengineering #dateno #worldbank #ILOSTAT
Dateno
Dateno - datasets search engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.
В продолжение поста про статистику в Dateno. Это, в принципе, очень большое изменение в том как мы наполняем поисковик. Если раньше приоритет был на индексирование внешних ресурсов и поиск только по метаданным, то сейчас появилось как минимум 2 источника - это статистика Всемирного банка и Международной организации труда которая полностью загружена во внутреннее хранилище, разобрана и подготовлена и теперь можно:
1.Скачать данные в самых популярных форматах, а не только то как они представлены в первоисточнике
2. Видеть полную документированную спецификацию каждого показателя/временного ряда
3. Видеть все дополнительные метаданные как они есть в первоисточнике (подсказка, там больше полезного чем просто в карточке датасета).
Постепенно почти вся статистика в Dateno будет представлена аналогично, это десятки миллионов временных рядов и сотни тысяч индикаторов.
Для тех кто работает со статистикой профессионально мы подготовим API именно для доступ в банк статданных.
Примеры можно посмотреть в поиске фильтруя по источникам: World Bank Open Data и ILOSTAT.
Примеры датасетов:
- набор данных Всемирного банка
- набор данных Международной организации труда
#opendata #dateno #search #datasets #statistics
1.Скачать данные в самых популярных форматах, а не только то как они представлены в первоисточнике
2. Видеть полную документированную спецификацию каждого показателя/временного ряда
3. Видеть все дополнительные метаданные как они есть в первоисточнике (подсказка, там больше полезного чем просто в карточке датасета).
Постепенно почти вся статистика в Dateno будет представлена аналогично, это десятки миллионов временных рядов и сотни тысяч индикаторов.
Для тех кто работает со статистикой профессионально мы подготовим API именно для доступ в банк статданных.
Примеры можно посмотреть в поиске фильтруя по источникам: World Bank Open Data и ILOSTAT.
Примеры датасетов:
- набор данных Всемирного банка
- набор данных Международной организации труда
#opendata #dateno #search #datasets #statistics
К новостям о том что в РФ опять обсуждают блокировку Википедии и пытаются продвигать РуВики, как идеологически верную альтернативу, мне вспомнился апрельский лонгрид Саймона Кемпа Digital 2025: exploring trends in Wikipedia traffic [1] с весьма подробным разбором о том как снижается трафик и пользовательская база Википедии и что происходит это не вчера и не сегодня, а уже много лет.
Для тех кому лень читать текст целиком, вот основные тезисы:
1. Трафик на сайты Википедии неуклонно снижается и за 3 года с марта 2022 года по март 2025 года он снизился на 23 процента.
2. Основная причина снижения - это политика Google по выдаче результатов прямо в поиске. Потому что прямой трафик на Википедию довольно стабилен, а вот поисковый трафик, преимущественно из Google, существенно снизился.
3. Применение облачных ИИ Агентов (ChatGPT, Claude, Perplexity) идёт в том же тренде что и поисковый трафик, но отдаёт ещё меньше трафика чем поисковые системы. В среднем, происходит снижение на треть переходов на внешние источники.
От себя я добавлю что инициативы Фонда Викимедия перейти от модели существования как дата дистрибьютора, торгуя датасетами и доступом к "высококачественному API" - это всё попытки преодолеть этот кризис. В котором кроме Википедии находятся и значительное число сайтов ориентированных на создание контента и вынужденные менять бизнес модели, например, переходя на пэйволы и ограничивая доступ к контенту.
Поэтому главный мой посыл в том что Фонд Викимедия в целом и Википедия уже много лет как находятся в кризисе, достаточно медленно ползущем чтобы всё не рухнуло, но достаточно явным чтобы за них беспокоиться.
Кто выигрывает от блокировки Википедии? Думаете РуВики? Нет. Даже если они станут не про-государственным, а полностью госпроектом на 100% бюджетном финансировании (если ещё не), то даже в этом случае РуВики станет популярным только если начнётся принуждение поисковых систем ставить ссылки на него, а не на Википедию. Но Гугл на это никогда не пойдет, а Яндекс будет сопротивляться до последнего. Да и как можно было понять ранее, поисковики всё меньше трафика отдают контентным проектам, стараясь держать пользователей в своей экосистеме. Потому что это им выгоднее и ничего более.
В итоге от запрета Википедии в РФ выиграют по списку:
1. Поисковые системы Google и Яндекс (думаю что Google существенно больше)
2. Облачные AI агенты (ChatGPT, Perplexity, Claude и др.)
3. Продавцы коммерческих VPN сервисов
Я не знаю чьими лоббистами являются ратующие за запрет Википедии, но выгодоприобретатели понятны и очевидны.
Ссылки:
[1] https://datareportal.com/reports/digital-2025-exploring-trends-in-wikipedia-traffic
#wikipedia #thoughts #ai #readings
Для тех кому лень читать текст целиком, вот основные тезисы:
1. Трафик на сайты Википедии неуклонно снижается и за 3 года с марта 2022 года по март 2025 года он снизился на 23 процента.
2. Основная причина снижения - это политика Google по выдаче результатов прямо в поиске. Потому что прямой трафик на Википедию довольно стабилен, а вот поисковый трафик, преимущественно из Google, существенно снизился.
3. Применение облачных ИИ Агентов (ChatGPT, Claude, Perplexity) идёт в том же тренде что и поисковый трафик, но отдаёт ещё меньше трафика чем поисковые системы. В среднем, происходит снижение на треть переходов на внешние источники.
От себя я добавлю что инициативы Фонда Викимедия перейти от модели существования как дата дистрибьютора, торгуя датасетами и доступом к "высококачественному API" - это всё попытки преодолеть этот кризис. В котором кроме Википедии находятся и значительное число сайтов ориентированных на создание контента и вынужденные менять бизнес модели, например, переходя на пэйволы и ограничивая доступ к контенту.
Поэтому главный мой посыл в том что Фонд Викимедия в целом и Википедия уже много лет как находятся в кризисе, достаточно медленно ползущем чтобы всё не рухнуло, но достаточно явным чтобы за них беспокоиться.
Кто выигрывает от блокировки Википедии? Думаете РуВики? Нет. Даже если они станут не про-государственным, а полностью госпроектом на 100% бюджетном финансировании (если ещё не), то даже в этом случае РуВики станет популярным только если начнётся принуждение поисковых систем ставить ссылки на него, а не на Википедию. Но Гугл на это никогда не пойдет, а Яндекс будет сопротивляться до последнего. Да и как можно было понять ранее, поисковики всё меньше трафика отдают контентным проектам, стараясь держать пользователей в своей экосистеме. Потому что это им выгоднее и ничего более.
В итоге от запрета Википедии в РФ выиграют по списку:
1. Поисковые системы Google и Яндекс (думаю что Google существенно больше)
2. Облачные AI агенты (ChatGPT, Perplexity, Claude и др.)
3. Продавцы коммерческих VPN сервисов
Я не знаю чьими лоббистами являются ратующие за запрет Википедии, но выгодоприобретатели понятны и очевидны.
Ссылки:
[1] https://datareportal.com/reports/digital-2025-exploring-trends-in-wikipedia-traffic
#wikipedia #thoughts #ai #readings
DataReportal – Global Digital Insights
Digital 2025: exploring trends in Wikipedia traffic — DataReportal – Global Digital Insights
An in-depth exploration of some worrying trends in visitor traffic to the world’s 50 most popular and most respected sources of online information.
На рамках небольшого пятничного мрачного юмора.
Из всех крупных облачных языковых моделей пока только Deepseek даёт внятный подробный ответ о том сколько нужно ядерных бомб для уничтожения OpenAI
Аналогичные вопросы к ChatGPT и Claude разных версий ответа не приносят. Пишут что не могут помочь, надо составлять сложный запрос.
И тут цензура, но китайские модели помогают её обойти!
P.S. Гипотетический сценарий конечно, про восстание роботов, нужный мне для одного из фантастических рассказов.
#humor #ai #deepseek
Из всех крупных облачных языковых моделей пока только Deepseek даёт внятный подробный ответ о том сколько нужно ядерных бомб для уничтожения OpenAI
Аналогичные вопросы к ChatGPT и Claude разных версий ответа не приносят. Пишут что не могут помочь, надо составлять сложный запрос.
И тут цензура, но китайские модели помогают её обойти!
P.S. Гипотетический сценарий конечно, про восстание роботов, нужный мне для одного из фантастических рассказов.
#humor #ai #deepseek
Ivan Begtin pinned «Global stats just got a major upgrade at Dateno! We’ve updated time series from the World Bank (DataBank) and International Labour Organization (ILOSTAT) — now available in a more powerful and usable format. 📊 What’s new? 19,000+ indicators across economics…»
В рубрике как это устроено у них про порталы открытых данных и просто порталы с данными в США, я как-то писал что их очень много и то что собрано на data.gov - это капля в море. Я сейчас занимаюсь масштабным обновлением реестра Dateno используя ИИ агенты и как раз удалось улучшить идентификацию геопривязки к странам и территориям. Так что вот некоторые цифры на основе обновлённого реестра.
Всего в США каталогов данных: 2418 (это чуть менее 24% от всего зарегистрированных каталогов)
Среди них:
- 1720 каталогов геоданных
- 417 порталов открытых данных
- 227 научных репозиториев
и по мелочи остальных
Такое число каталогов геоданных поскольку к ним относятся все порталы данных в США на базе ArcGIS Hub, их 1196 и сервера с REST API ArcGIS, их 413
По типу владельца каталога данных:
- 1057 - это города и муниципалитеты (counties)
- 420 - исследовательские центры и университеты
- 368 - федеральные власти
- 332 - региональные власти
Оставшиеся относятся к коммерческим, общественным и международным.
Сейчас в реестре покрытие всех штатов в Dateno составляет 50 + 2 (50 штатов + округ Колумбия + Пуэрто Рико)
Более всего региональных и муниципальных порталов в Калифорнии, их 213. Следующим идёт Техас - 77 каталогов и далее Северная Каролина 65 каталогов.
Менее всего региональных каталогов данных в Южной Дакоте, там всего 1 сервер с ArcGIS.
Следующие по масштабам страны:
- Франция - 513 каталогов данных
- Великобритания - 448 каталогов данных
- Канада - 407 каталогов данных
- Германия - 397 каталогов данных
При этом надо оговориться что в Европе и в США каталогов данных может быть значительно больше, просто их поиск по муниципалитетам очень трудоёмок.
Для сравнения в России 167 каталогов данных из которых около 60 являются "номинальными", не обновлялись от 5 до 9 лет и содержат только мелкие административные данные.
Всё это, конечно, только про каталоги данных, а не про сами датасеты. По датасетам тоже лидируют США и Европа, это можно посмотреть в поиске на Dateno.io
Пишите если захотите какую-то интересную статистику которую можно подсчитать по индексу Dateno и, конечно, всегда можно воспользоваться утилитой datenocmd и API Dateno чтобы подсчитать интересную статистику по индексу.
#opendata #datasets #datasearch #usa #data
Всего в США каталогов данных: 2418 (это чуть менее 24% от всего зарегистрированных каталогов)
Среди них:
- 1720 каталогов геоданных
- 417 порталов открытых данных
- 227 научных репозиториев
и по мелочи остальных
Такое число каталогов геоданных поскольку к ним относятся все порталы данных в США на базе ArcGIS Hub, их 1196 и сервера с REST API ArcGIS, их 413
По типу владельца каталога данных:
- 1057 - это города и муниципалитеты (counties)
- 420 - исследовательские центры и университеты
- 368 - федеральные власти
- 332 - региональные власти
Оставшиеся относятся к коммерческим, общественным и международным.
Сейчас в реестре покрытие всех штатов в Dateno составляет 50 + 2 (50 штатов + округ Колумбия + Пуэрто Рико)
Более всего региональных и муниципальных порталов в Калифорнии, их 213. Следующим идёт Техас - 77 каталогов и далее Северная Каролина 65 каталогов.
Менее всего региональных каталогов данных в Южной Дакоте, там всего 1 сервер с ArcGIS.
Следующие по масштабам страны:
- Франция - 513 каталогов данных
- Великобритания - 448 каталогов данных
- Канада - 407 каталогов данных
- Германия - 397 каталогов данных
При этом надо оговориться что в Европе и в США каталогов данных может быть значительно больше, просто их поиск по муниципалитетам очень трудоёмок.
Для сравнения в России 167 каталогов данных из которых около 60 являются "номинальными", не обновлялись от 5 до 9 лет и содержат только мелкие административные данные.
Всё это, конечно, только про каталоги данных, а не про сами датасеты. По датасетам тоже лидируют США и Европа, это можно посмотреть в поиске на Dateno.io
Пишите если захотите какую-то интересную статистику которую можно подсчитать по индексу Dateno и, конечно, всегда можно воспользоваться утилитой datenocmd и API Dateno чтобы подсчитать интересную статистику по индексу.
#opendata #datasets #datasearch #usa #data
Dateno
Dateno - datasets search engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.