Читаю работу OpenAlex: End-to-End Process for Topic Classification [1] от команды графа по научным работам OpenAlex о том как они классифицируют научные работы по каким темам и там у них есть иерархическая модель разметки работ по уровням Domains -> Fields -> Subfields -> Topics, причём тем (topics) довольно много и они привязаны все к статьям в Википедии. А вообще они построили свою классификацию через идентификацию макрокластеров [3] сообществ через цитирование. Большая и интересная тема, с понятной сложностью и результатами.
Я на всё это смотрю с точки зрения улучшения классификации датасетов в Dateno [4]. Сейчас в Dateno используется два классификатора. Европейский Data Theme [5] используемый в их портале data.europe.eu, но у него всего 13 тем очень верхнеуровневых и тематические категории (topic category) из ISO 19115 [6] которых 19 штук и тоже без иерархии. Тематические категории используются в каталогах данных на базе Geonetwork и в программе INSPIRE Евросоюза и они применимы к геоданным, в первую очередь.
Это одна из особенностей Dateno, да и остальных индексаторов датасетов. По разным блокам и типам каталогов данных свои тематические категории, не связанные между собой и кроме обычных датасетов и геоданных есть ещё и большие банки статистических данных живущих по своим правилам и своим группам.
Сложностей несколько:
- в отличие от научных работ здесь нет цитирования или аналогичных связей, значительно сложнее строить смысловые кластеры. Их можно строить на названиях, оригинальных тематиках в первоисточнике, тематиках самого первоисточника, но не на цитировании и не на связях.
- язык науки в мире почти весь английский, а там где не английский то французский, но в целом все исходят из того что он английский. А среди датасетов много данных на самых разных языках. Тут как раз проще со статистикой которая почти всегда имеет английскую версию и сложнее с остальным.
Тем не менее своя классификация необходима и её идеальные параметры были бы когда одна тема охватывает не более 10 тысяч наборов данных или временных рядов. То есть если мы имеем базу в 22 миллиона набора датасетов, то тематик должно быть не менее 2.2 тысяч, а ещё лучше не менее 5 тысяч. Тогда пользователь получает возможность быстро сузить поиск до нужной ему темы. Тогда у Dateno появляется ещё одна важная модель его применения, это подписка на появление нужных данных в одной или нескольких узких областях избегая ложных срабатываний при ключевых словах.
Без ИИ тут, кстати, не обойтись и ребята из OpenAlex использовали модель GPT 3.5 Turbo [7] для кластеризации научных работ и подбора названий выявленным кластерам.
Ссылки:
[1] https://docs.google.com/document/d/1bDopkhuGieQ4F8gGNj7sEc8WSE8mvLZS/edit?tab=t.0
[2] https://docs.google.com/spreadsheets/d/1v-MAq64x4YjhO7RWcB-yrKV5D_2vOOsxl4u6GBKEXY8/edit?gid=983250122#gid=983250122
[3] https://zenodo.org/records/10560276
[4] https://dateno.io
[5] https://op.europa.eu/en/web/eu-vocabularies/concept-scheme/-/resource?uri=http://publications.europa.eu/resource/authority/data-theme
[6] https://apps.usgs.gov/thesaurus/term-simple.php?thcode=15&code=000
[7] https://www.leidenmadtrics.nl/articles/an-open-approach-for-classifying-research-publications
#opendata #opensource #dateno #thoughts
Я на всё это смотрю с точки зрения улучшения классификации датасетов в Dateno [4]. Сейчас в Dateno используется два классификатора. Европейский Data Theme [5] используемый в их портале data.europe.eu, но у него всего 13 тем очень верхнеуровневых и тематические категории (topic category) из ISO 19115 [6] которых 19 штук и тоже без иерархии. Тематические категории используются в каталогах данных на базе Geonetwork и в программе INSPIRE Евросоюза и они применимы к геоданным, в первую очередь.
Это одна из особенностей Dateno, да и остальных индексаторов датасетов. По разным блокам и типам каталогов данных свои тематические категории, не связанные между собой и кроме обычных датасетов и геоданных есть ещё и большие банки статистических данных живущих по своим правилам и своим группам.
Сложностей несколько:
- в отличие от научных работ здесь нет цитирования или аналогичных связей, значительно сложнее строить смысловые кластеры. Их можно строить на названиях, оригинальных тематиках в первоисточнике, тематиках самого первоисточника, но не на цитировании и не на связях.
- язык науки в мире почти весь английский, а там где не английский то французский, но в целом все исходят из того что он английский. А среди датасетов много данных на самых разных языках. Тут как раз проще со статистикой которая почти всегда имеет английскую версию и сложнее с остальным.
Тем не менее своя классификация необходима и её идеальные параметры были бы когда одна тема охватывает не более 10 тысяч наборов данных или временных рядов. То есть если мы имеем базу в 22 миллиона набора датасетов, то тематик должно быть не менее 2.2 тысяч, а ещё лучше не менее 5 тысяч. Тогда пользователь получает возможность быстро сузить поиск до нужной ему темы. Тогда у Dateno появляется ещё одна важная модель его применения, это подписка на появление нужных данных в одной или нескольких узких областях избегая ложных срабатываний при ключевых словах.
Без ИИ тут, кстати, не обойтись и ребята из OpenAlex использовали модель GPT 3.5 Turbo [7] для кластеризации научных работ и подбора названий выявленным кластерам.
Ссылки:
[1] https://docs.google.com/document/d/1bDopkhuGieQ4F8gGNj7sEc8WSE8mvLZS/edit?tab=t.0
[2] https://docs.google.com/spreadsheets/d/1v-MAq64x4YjhO7RWcB-yrKV5D_2vOOsxl4u6GBKEXY8/edit?gid=983250122#gid=983250122
[3] https://zenodo.org/records/10560276
[4] https://dateno.io
[5] https://op.europa.eu/en/web/eu-vocabularies/concept-scheme/-/resource?uri=http://publications.europa.eu/resource/authority/data-theme
[6] https://apps.usgs.gov/thesaurus/term-simple.php?thcode=15&code=000
[7] https://www.leidenmadtrics.nl/articles/an-open-approach-for-classifying-research-publications
#opendata #opensource #dateno #thoughts
👍5✍3
Что я понял про дата инженерию за N лет работы с данными:
1. Из всех ресурсов всегда более всего, почти всегда, нехватает места для хранения и каналов для передачи данных. А когда начинает хватать, то потребности вырастают
2 Держи данные сжатыми, желательно всегда, но выбирая между способами сжатия выбирай те что позволяют использовать данные при потоковом разжимании данных.
3. Всегда имей архивную копию данных которые когда либо использовались. Если только нет юридических ограничений и ограничения в хранилищах не припёрли жёстко к стенке.
4. Не документировать данные тяжкий грех. Большинство патологические тяжкие грешники.
5. Если ты не платишь за данные поставщику они могут исчезнуть из доступа в любой момент. Если платишь то тоже, но реже и можно быстрее отреагировать.
6. Инструментарий очень быстро меняется, зацикливаться на инструментах 10-15 летней давности опасно для потери квалификации.
7. Все ненавидят облака, но жрут этот кактус. Иногда надо заставлять других этот кактус есть . Пользователей жалко, но всё идет туда.
8. Владей хотя бы одним ETL/ELT инструментом хорошо и ещё 2-3 хотя бы базово.
9. Данные всегда грязные. С небольшими табличками аналитики могут справиться сами, а большие требуют навыков дата инженеров.
10. Командная строка имеет значение (с). Многое работает значительно быстрее и эффективнее с командной строки.
Добавляйте ваши пункты😜
#dataengineering #thoughts
1. Из всех ресурсов всегда более всего, почти всегда, нехватает места для хранения и каналов для передачи данных. А когда начинает хватать, то потребности вырастают
2 Держи данные сжатыми, желательно всегда, но выбирая между способами сжатия выбирай те что позволяют использовать данные при потоковом разжимании данных.
3. Всегда имей архивную копию данных которые когда либо использовались. Если только нет юридических ограничений и ограничения в хранилищах не припёрли жёстко к стенке.
4. Не документировать данные тяжкий грех. Большинство патологические тяжкие грешники.
5. Если ты не платишь за данные поставщику они могут исчезнуть из доступа в любой момент. Если платишь то тоже, но реже и можно быстрее отреагировать.
6. Инструментарий очень быстро меняется, зацикливаться на инструментах 10-15 летней давности опасно для потери квалификации.
7. Все ненавидят облака, но жрут этот кактус. Иногда надо заставлять других этот кактус есть . Пользователей жалко, но всё идет туда.
8. Владей хотя бы одним ETL/ELT инструментом хорошо и ещё 2-3 хотя бы базово.
9. Данные всегда грязные. С небольшими табличками аналитики могут справиться сами, а большие требуют навыков дата инженеров.
10. Командная строка имеет значение (с). Многое работает значительно быстрее и эффективнее с командной строки.
Добавляйте ваши пункты😜
#dataengineering #thoughts
1👍18
К вопросу о достоверности данных и поисковиках на базе ИИ, типа ChatGPT, Perplexity и всех остальных есть один важный момент который часто упускается. Классические поисковики много ресурсов вложили и вкладывают чтобы чистить всяческий SEO мусор. Когда какие-нибудь не самые думающие люди вместо сервисов для людей делают сайты для поисковиков и превращают какие-нибудь данные в бесконечное число страниц. С целью размещения на них рекламы, конечно, а не услуг для пользователей.
Крупные поисковики их чистят, или сильно пессимизируют в выдаче. А вот всякие AI краулеры этого не знают и не понимают и сжирают публикуемое там и делают на основе этого выводы. А у этого может быть то крайне неприятное последствия в том что можно подсовывать AI поисковикам очень фэйковые данные, тем самым "отравляя результаты" ответов ИИ поисковика.
Я это наблюдал на Perplexity который делал аналитические выводы не по первоисточникам, а по таким мусорным SEO'шным сайтам. В то же время Google и Yandex выдавали по тем же запросам ссылки на первоисточники.
#ai #thoughts
Крупные поисковики их чистят, или сильно пессимизируют в выдаче. А вот всякие AI краулеры этого не знают и не понимают и сжирают публикуемое там и делают на основе этого выводы. А у этого может быть то крайне неприятное последствия в том что можно подсовывать AI поисковикам очень фэйковые данные, тем самым "отравляя результаты" ответов ИИ поисковика.
Я это наблюдал на Perplexity который делал аналитические выводы не по первоисточникам, а по таким мусорным SEO'шным сайтам. В то же время Google и Yandex выдавали по тем же запросам ссылки на первоисточники.
#ai #thoughts
🔥16👍12💯3❤2🤝2🤔1
Новые тарифы введённые Трампом в США сейчас наделали много шума. У США большой торговый дефицит, особенно с ЕС и Китаем, но... есть нюанс. Этот дефицит почти весь в физических товарах, а в цифровых продуктах и сервисах у США невероятный профицит. Для тех кто не читал ещё, статья в Nature от июня 2024 года Estimating digital product trade through corporate revenue data [1] где авторы декомпозировали импорт/экспорт стран на основе отчётов цифрового крупняка. Там есть что почитать. А один из авторов той работы, Цезарь Идальго, опубликовал вот такие картинки по структуре импорта и экспорта цифровых продуктов [2].
Почему это важно? Потому что один из вероятных сценариев ответа на тарифы Трампа может быть "тарифный удар" по цифровым продуктам и сервисам из США, тоже для соблюдения паритета торгового баланса.
А это затронет практически весь ИТ сектор по всему миру.
P.S. На эту же тему сегодня выступал Макрон о том что при оценке торгового баланса США не учитывали торговлю цифровыми товарами. Так что все понимают на какую область придётся ответ ЕС и других стран.
Ссылки:
[1] https://www.nature.com/articles/s41467-024-49141-z
[2] https://x.com/cesifoti/status/1907529502340624711
#thoughts #tariffs #it #usa #trump
Почему это важно? Потому что один из вероятных сценариев ответа на тарифы Трампа может быть "тарифный удар" по цифровым продуктам и сервисам из США, тоже для соблюдения паритета торгового баланса.
А это затронет практически весь ИТ сектор по всему миру.
P.S. На эту же тему сегодня выступал Макрон о том что при оценке торгового баланса США не учитывали торговлю цифровыми товарами. Так что все понимают на какую область придётся ответ ЕС и других стран.
Ссылки:
[1] https://www.nature.com/articles/s41467-024-49141-z
[2] https://x.com/cesifoti/status/1907529502340624711
#thoughts #tariffs #it #usa #trump
11🤔18👍5❤4😱4
Что я понял за 15 лет работы с открытыми данными
[продолжаю рассуждать на разные темы пунктами, тем у меня ещё много;)]
1. Открытых данных очень много в целом, но мало когда исследуешь конкретную тему.
2. Если есть общая установка сверху то чиновники вполне адекватны в готовности публиковать данные. Если установки сверху нет, то только если это соответствует какой-то другой их повестке.
3. Да, открытые данные публикуются даже авторитарными режимами и диктатурами. Их доступность определяется не только политической повесткой, но и технологической зрелостью. Особенно много данных в странах где есть политическая повестка открытости + культура открытости + технологическая зрелость.
4. Для бизнеса открытые данные - это не более чем снижение до около нуля стоимости покупки данных. Но не ноль потому что стоимость владения и работы с данными складывается из расходов на их выгрузку, хранение, и работу дата программистов по их обработке.
5. За редким исключением дата корпорации, чем крупнее, тем сильнее, избегают публикации данных. Для них любые датасеты - это ценный материальный актив. Исключения есть в только там где они находят значимую выгоду от открытости - тренировка алгоритмов для ИИ, хакатоны, поддержание публичного реноме и тд. Но это всё всегда проходит через линзы оценки стоимости.
6. Движение открытости данных собиралось из 3-х потоков: научного (открытый доступ), политического (право на доступ к информации), технологического (интеграция информационных систем, особенно гос). Иногда они пересекаются, иногда нет. Научное наиболее устойчивое, но часто замкнутое в отдельных областях. Политическое нестабильное от грантополучения и повестки. Технологическое часто суженное до очень узких задач и часто отодвигающееся от открытости в сторону работы с условно любыми данными, не открытыми.
7. Порталы открытых данных сильно отстают от современной дата инженерии, но почти все современные дата продукт используют большие открытые датасеты в качестве примеров того что можно сделать на их основе
8. На открытых данных нет хороших бизнес моделей. Вернее нет хороших бизнес моделей _только_ на открытых данных. Хорошие дата продукты, как правило, интегрируют много разных дата источников.
9. Самые крупные доступные датасеты в мире - это физика частиц и расшифрованные геномы, все связаны с научными дисциплинами. Одни из самых востребованных - базовые слои геоданных.
#opendata #thoughts
[продолжаю рассуждать на разные темы пунктами, тем у меня ещё много;)]
1. Открытых данных очень много в целом, но мало когда исследуешь конкретную тему.
2. Если есть общая установка сверху то чиновники вполне адекватны в готовности публиковать данные. Если установки сверху нет, то только если это соответствует какой-то другой их повестке.
3. Да, открытые данные публикуются даже авторитарными режимами и диктатурами. Их доступность определяется не только политической повесткой, но и технологической зрелостью. Особенно много данных в странах где есть политическая повестка открытости + культура открытости + технологическая зрелость.
4. Для бизнеса открытые данные - это не более чем снижение до около нуля стоимости покупки данных. Но не ноль потому что стоимость владения и работы с данными складывается из расходов на их выгрузку, хранение, и работу дата программистов по их обработке.
5. За редким исключением дата корпорации, чем крупнее, тем сильнее, избегают публикации данных. Для них любые датасеты - это ценный материальный актив. Исключения есть в только там где они находят значимую выгоду от открытости - тренировка алгоритмов для ИИ, хакатоны, поддержание публичного реноме и тд. Но это всё всегда проходит через линзы оценки стоимости.
6. Движение открытости данных собиралось из 3-х потоков: научного (открытый доступ), политического (право на доступ к информации), технологического (интеграция информационных систем, особенно гос). Иногда они пересекаются, иногда нет. Научное наиболее устойчивое, но часто замкнутое в отдельных областях. Политическое нестабильное от грантополучения и повестки. Технологическое часто суженное до очень узких задач и часто отодвигающееся от открытости в сторону работы с условно любыми данными, не открытыми.
7. Порталы открытых данных сильно отстают от современной дата инженерии, но почти все современные дата продукт используют большие открытые датасеты в качестве примеров того что можно сделать на их основе
8. На открытых данных нет хороших бизнес моделей. Вернее нет хороших бизнес моделей _только_ на открытых данных. Хорошие дата продукты, как правило, интегрируют много разных дата источников.
9. Самые крупные доступные датасеты в мире - это физика частиц и расшифрованные геномы, все связаны с научными дисциплинами. Одни из самых востребованных - базовые слои геоданных.
#opendata #thoughts
👍21❤🔥1❤1🔥1
Интересная свежая статья в Journal of Democracy под названием Delivering Democracy. Why Results matter? [1], на русском языке она прозвучала была с двояким смыслом "Доставляя демократию. Почему результаты имеют значение?". Доставляя как: гуманитарными или военными самолётами? Но здесь речь о классическом понимании provide (предоставлять). Среди авторов статьи Френсис Фукуяма что ещё одна причина её почитать.
Если коротко, то основная идея в том что Демократия не может быть основана только на идеалах. Граждане хотят результатов: работы, безопасности, услуг. Мысль не то чтобы новая, но предельно коротко и точно изложенная именно в этой статье и то что ситуации когда в демократических странах идут долгие экономические кризисы то возникают и кризисы восприятия демократии и наоборот и есть бесспорные экономические успехи в авторитарных странах.
Я, также, ранее не встречал термина performance legitimacy, он есть в предыдущей статье Бена Кросса, Performance Legitimacy for Realists [2] одного из соавторов. Это термин применяемый к восточно-азиатским странам и его можно описать так
Легитимность на основе эффективности (или performance legitimacy) — это концепция, согласно которой власть обосновывает своё право на управление через успешное выполнение задач, направленных на улучшение жизни граждан, а не через традиционные или демократические источники легитимности. Этот подход основывается на достижении положительных материальных результатов, таких как экономический рост, снижение уровня бедности и повышение качества жизни населения.
И, кстати, он применим не только к восточно-азиатским странам, многие авторитарные страны в мире идут тем же путём. И это не худшая форма авторитаризма, конечно,.
Ключевое в статье - это акцент на том как перезапустить демократии чтобы они тоже могли доставлять не хуже авторитарных режимов и, честно говоря, ответов там мало. Я увидел один базовый тезис - лучше управляйте экономикой и его расширение эффективнее развивайте инфраструктуру.
Всё это, конечно, к технологической инфраструктуре и цифровым сервисам имеет прямое отношение. У демократических государств гораздо больше барьеров в их реализации. Авторитаризм имеющие большие экономические ресурсы может быть весьма эффективен. Как демократиям научиться доставлять в этой области - вот в чём вопрос.
Ссылки:
[1] https://muse.jhu.edu/pub/1/article/954557
[2] https://muse.jhu.edu/pub/5/article/918473
#opengov #data tech #thoughts #democracy #digitalservices
Если коротко, то основная идея в том что Демократия не может быть основана только на идеалах. Граждане хотят результатов: работы, безопасности, услуг. Мысль не то чтобы новая, но предельно коротко и точно изложенная именно в этой статье и то что ситуации когда в демократических странах идут долгие экономические кризисы то возникают и кризисы восприятия демократии и наоборот и есть бесспорные экономические успехи в авторитарных странах.
Я, также, ранее не встречал термина performance legitimacy, он есть в предыдущей статье Бена Кросса, Performance Legitimacy for Realists [2] одного из соавторов. Это термин применяемый к восточно-азиатским странам и его можно описать так
Легитимность на основе эффективности (или performance legitimacy) — это концепция, согласно которой власть обосновывает своё право на управление через успешное выполнение задач, направленных на улучшение жизни граждан, а не через традиционные или демократические источники легитимности. Этот подход основывается на достижении положительных материальных результатов, таких как экономический рост, снижение уровня бедности и повышение качества жизни населения.
И, кстати, он применим не только к восточно-азиатским странам, многие авторитарные страны в мире идут тем же путём. И это не худшая форма авторитаризма, конечно,.
Ключевое в статье - это акцент на том как перезапустить демократии чтобы они тоже могли доставлять не хуже авторитарных режимов и, честно говоря, ответов там мало. Я увидел один базовый тезис - лучше управляйте экономикой и его расширение эффективнее развивайте инфраструктуру.
Всё это, конечно, к технологической инфраструктуре и цифровым сервисам имеет прямое отношение. У демократических государств гораздо больше барьеров в их реализации. Авторитаризм имеющие большие экономические ресурсы может быть весьма эффективен. Как демократиям научиться доставлять в этой области - вот в чём вопрос.
Ссылки:
[1] https://muse.jhu.edu/pub/1/article/954557
[2] https://muse.jhu.edu/pub/5/article/918473
#opengov #data tech #thoughts #democracy #digitalservices
muse.jhu.edu
Project MUSE - Delivering for Democracy: Why Results Matter
👍7❤6🔥4
Я об этом редко упоминаю, но у меня есть хобби по написанию наивных научно фантастических рассказов и стихов, когда есть немного свободного времени и подходящие темы.
И вот в последнее время я думаю о том какие есть подходящие темы в контексте человечества и ИИ, так чтобы в контексте современного прогресса и не сильно повторяться с НФ произведениями прошлых лет.
Вот моя коллекция потенциальных тем для сюжетов.
1. Сила одного
Развитие ИИ и интеграции ИИ агентов в повседневную жизнь даёт новые возможности одиночкам осуществлять террор. Террористы не объединяются в ячейки, не общаются между собой, к ним невозможно внедрится или "расколоть" потому что они становятся технически подкованными одиночками с помощью дронов, ИИ агентов и тд. сеящие много хаоса.
2. Безэтичные ИИ.
Параллельно к этическим ИИ появляется чёрный рынок отключения этики у ИИ моделей и продажа моделей изначально с отключённой этикой. Все спецслужбы пользуются только такими ИИ, как и многие преступники. У таких ИИ агентов нет ограничений на советы, рекомендации, действия и тд.
3. Корпорация "Сделано людьми"
Почти всё творчество в мире или создаётся ИИ, или с помощью ИИ или в среде подверженной культурному влиянию ИИ. Появляется корпорация "Сделано людьми" сертифицирующая продукцию как гарантированно произведённой человеком. Такая сертификация это сложный и болезненный процесс, требующий от желающих её пройти большой самоотдачи.
#thoughts #future #thinking #ai
И вот в последнее время я думаю о том какие есть подходящие темы в контексте человечества и ИИ, так чтобы в контексте современного прогресса и не сильно повторяться с НФ произведениями прошлых лет.
Вот моя коллекция потенциальных тем для сюжетов.
1. Сила одного
Развитие ИИ и интеграции ИИ агентов в повседневную жизнь даёт новые возможности одиночкам осуществлять террор. Террористы не объединяются в ячейки, не общаются между собой, к ним невозможно внедрится или "расколоть" потому что они становятся технически подкованными одиночками с помощью дронов, ИИ агентов и тд. сеящие много хаоса.
2. Безэтичные ИИ.
Параллельно к этическим ИИ появляется чёрный рынок отключения этики у ИИ моделей и продажа моделей изначально с отключённой этикой. Все спецслужбы пользуются только такими ИИ, как и многие преступники. У таких ИИ агентов нет ограничений на советы, рекомендации, действия и тд.
3. Корпорация "Сделано людьми"
Почти всё творчество в мире или создаётся ИИ, или с помощью ИИ или в среде подверженной культурному влиянию ИИ. Появляется корпорация "Сделано людьми" сертифицирующая продукцию как гарантированно произведённой человеком. Такая сертификация это сложный и болезненный процесс, требующий от желающих её пройти большой самоотдачи.
#thoughts #future #thinking #ai
👍20❤6⚡5
Некоторые мысли вслух по поводу технологических трендов последнего времени:
1. Возвращение профессионализации в ИТ.
Как следствие массового применения LLM для разработки и кризиса "рынка джуниоров" в ИТ. LLM ещё не скоро научатся отладке кода и в этом смысле не смогут заменить senior и middle разработчиков, а вот про массовое исчезновение вакансий и увольнения младших разработчиков - это всё уже с нами. Плохо ли это или хорошо? Это плохо для тех кто пошёл в ИТ не имея реального интереса к профессиональной ИТ разработке, хорошо для тех для кого программная инженерия - это основная специальность и очень хорошо для отраслевых специалистов готовых осваивать nocode и lowcode инструменты.
Перспектива: прямо сейчас
2. Регистрация и аттестация ИИ агентов и LLM.
В случае с ИИ повторяется история с развитием Интернета, когда технологии менялись значительно быстрее чем регуляторы могли/способны реагировать. Сейчас есть ситуация с высокой степенью фрагментации и демократизации доступа к ИИ агентам, даже при наличии очень крупных провайдеров сервисов, у них множество альтернатив и есть возможность использовать их на собственном оборудовании. Но это не значит что пр-ва по всему миру не алчут ограничить и регулировать их применение. Сейчас их останавливает только непрерывный поток технологических изменений. Как только этот поток хоть чуть-чуть сбавит напор, неизбежен приход регуляторов и введение аттестации, реестров допустимых LLM/ИИ агентов и тд. Всё это будет происходить под знамёнами: защиты перс. данных, защиты прав потребителей, цензуры (защиты от недопустимого контента), защиты детей, защиты пациентов, национальной безопасности и тд.
Перспектива: 1-3 года
3. Резкая смена ландшафта поисковых систем
Наиболее вероятный кандидат Perplexity как новый игрок, но может и Bing вынырнуть из небытия, теоретически и OpenAI и Anthropic могут реализовать полноценную замену поиску Google. Ключевое тут в контроле экосистем и изменении интересов операторов этих экосистем. А экосистем, по сути, сейчас три: Apple, Google и Microsoft. Понятно что Google не будет заменять свой поисковик на Android'е на что-либо ещё, но Apple вполне может заменить поиск под давлением регулятора и не только и пока Perplexity похоже на наиболее вероятного кандидата. Но, опять же, и Microsoft может перезапустить Bing на фоне этих событий.
Перспектива: 1 год
4. Поглощение ИИ-агентами корпоративных BI систем
Применение больших облачных ИИ агентов внутри компаний ограничено много чем, коммерческой тайной, персональными данными и тд., но "внутри" компаний могут разворачиваться собственные LLM системы которые будут чем-то похожи на корпоративные BI / ETL продукты, они тоже будут состыкованы со множеством внутренних источников данных. Сейчас разработчики корпоративных BI будут пытаться поставлять продукты с подключением к LLM/встроенным LLM. В перспективе всё будет наоборот. Будут продукты в виде корпоративных LLM с функциями BI.
Перспектива: 1-2 года
5. Сжимание рынка написания текстов / документации
Рынок документирования ИТ продукта если ещё не схлопнулся, то резко сжимается уже сейчас, а люди занимавшиеся тех писательством теперь могут оказаться без работы или с другой работой. В любом случае - это то что не просто поддаётся автоматизации, а просто напрашивающееся на неё. Всё больше стартапов и сервисов которые создадут Вам качественную документацию по Вашему коду, по спецификации API, по бессвязанным мыслям и многому другому.
Перспектива: прямо сейчас
#ai #thinking #reading #thoughts
1. Возвращение профессионализации в ИТ.
Как следствие массового применения LLM для разработки и кризиса "рынка джуниоров" в ИТ. LLM ещё не скоро научатся отладке кода и в этом смысле не смогут заменить senior и middle разработчиков, а вот про массовое исчезновение вакансий и увольнения младших разработчиков - это всё уже с нами. Плохо ли это или хорошо? Это плохо для тех кто пошёл в ИТ не имея реального интереса к профессиональной ИТ разработке, хорошо для тех для кого программная инженерия - это основная специальность и очень хорошо для отраслевых специалистов готовых осваивать nocode и lowcode инструменты.
Перспектива: прямо сейчас
2. Регистрация и аттестация ИИ агентов и LLM.
В случае с ИИ повторяется история с развитием Интернета, когда технологии менялись значительно быстрее чем регуляторы могли/способны реагировать. Сейчас есть ситуация с высокой степенью фрагментации и демократизации доступа к ИИ агентам, даже при наличии очень крупных провайдеров сервисов, у них множество альтернатив и есть возможность использовать их на собственном оборудовании. Но это не значит что пр-ва по всему миру не алчут ограничить и регулировать их применение. Сейчас их останавливает только непрерывный поток технологических изменений. Как только этот поток хоть чуть-чуть сбавит напор, неизбежен приход регуляторов и введение аттестации, реестров допустимых LLM/ИИ агентов и тд. Всё это будет происходить под знамёнами: защиты перс. данных, защиты прав потребителей, цензуры (защиты от недопустимого контента), защиты детей, защиты пациентов, национальной безопасности и тд.
Перспектива: 1-3 года
3. Резкая смена ландшафта поисковых систем
Наиболее вероятный кандидат Perplexity как новый игрок, но может и Bing вынырнуть из небытия, теоретически и OpenAI и Anthropic могут реализовать полноценную замену поиску Google. Ключевое тут в контроле экосистем и изменении интересов операторов этих экосистем. А экосистем, по сути, сейчас три: Apple, Google и Microsoft. Понятно что Google не будет заменять свой поисковик на Android'е на что-либо ещё, но Apple вполне может заменить поиск под давлением регулятора и не только и пока Perplexity похоже на наиболее вероятного кандидата. Но, опять же, и Microsoft может перезапустить Bing на фоне этих событий.
Перспектива: 1 год
4. Поглощение ИИ-агентами корпоративных BI систем
Применение больших облачных ИИ агентов внутри компаний ограничено много чем, коммерческой тайной, персональными данными и тд., но "внутри" компаний могут разворачиваться собственные LLM системы которые будут чем-то похожи на корпоративные BI / ETL продукты, они тоже будут состыкованы со множеством внутренних источников данных. Сейчас разработчики корпоративных BI будут пытаться поставлять продукты с подключением к LLM/встроенным LLM. В перспективе всё будет наоборот. Будут продукты в виде корпоративных LLM с функциями BI.
Перспектива: 1-2 года
5. Сжимание рынка написания текстов / документации
Рынок документирования ИТ продукта если ещё не схлопнулся, то резко сжимается уже сейчас, а люди занимавшиеся тех писательством теперь могут оказаться без работы или с другой работой. В любом случае - это то что не просто поддаётся автоматизации, а просто напрашивающееся на неё. Всё больше стартапов и сервисов которые создадут Вам качественную документацию по Вашему коду, по спецификации API, по бессвязанным мыслям и многому другому.
Перспектива: прямо сейчас
#ai #thinking #reading #thoughts
👍23
К новостям о том что в РФ опять обсуждают блокировку Википедии и пытаются продвигать РуВики, как идеологически верную альтернативу, мне вспомнился апрельский лонгрид Саймона Кемпа Digital 2025: exploring trends in Wikipedia traffic [1] с весьма подробным разбором о том как снижается трафик и пользовательская база Википедии и что происходит это не вчера и не сегодня, а уже много лет.
Для тех кому лень читать текст целиком, вот основные тезисы:
1. Трафик на сайты Википедии неуклонно снижается и за 3 года с марта 2022 года по март 2025 года он снизился на 23 процента.
2. Основная причина снижения - это политика Google по выдаче результатов прямо в поиске. Потому что прямой трафик на Википедию довольно стабилен, а вот поисковый трафик, преимущественно из Google, существенно снизился.
3. Применение облачных ИИ Агентов (ChatGPT, Claude, Perplexity) идёт в том же тренде что и поисковый трафик, но отдаёт ещё меньше трафика чем поисковые системы. В среднем, происходит снижение на треть переходов на внешние источники.
От себя я добавлю что инициативы Фонда Викимедия перейти от модели существования как дата дистрибьютора, торгуя датасетами и доступом к "высококачественному API" - это всё попытки преодолеть этот кризис. В котором кроме Википедии находятся и значительное число сайтов ориентированных на создание контента и вынужденные менять бизнес модели, например, переходя на пэйволы и ограничивая доступ к контенту.
Поэтому главный мой посыл в том что Фонд Викимедия в целом и Википедия уже много лет как находятся в кризисе, достаточно медленно ползущем чтобы всё не рухнуло, но достаточно явным чтобы за них беспокоиться.
Кто выигрывает от блокировки Википедии? Думаете РуВики? Нет. Даже если они станут не про-государственным, а полностью госпроектом на 100% бюджетном финансировании (если ещё не), то даже в этом случае РуВики станет популярным только если начнётся принуждение поисковых систем ставить ссылки на него, а не на Википедию. Но Гугл на это никогда не пойдет, а Яндекс будет сопротивляться до последнего. Да и как можно было понять ранее, поисковики всё меньше трафика отдают контентным проектам, стараясь держать пользователей в своей экосистеме. Потому что это им выгоднее и ничего более.
В итоге от запрета Википедии в РФ выиграют по списку:
1. Поисковые системы Google и Яндекс (думаю что Google существенно больше)
2. Облачные AI агенты (ChatGPT, Perplexity, Claude и др.)
3. Продавцы коммерческих VPN сервисов
Я не знаю чьими лоббистами являются ратующие за запрет Википедии, но выгодоприобретатели понятны и очевидны.
Ссылки:
[1] https://datareportal.com/reports/digital-2025-exploring-trends-in-wikipedia-traffic
#wikipedia #thoughts #ai #readings
Для тех кому лень читать текст целиком, вот основные тезисы:
1. Трафик на сайты Википедии неуклонно снижается и за 3 года с марта 2022 года по март 2025 года он снизился на 23 процента.
2. Основная причина снижения - это политика Google по выдаче результатов прямо в поиске. Потому что прямой трафик на Википедию довольно стабилен, а вот поисковый трафик, преимущественно из Google, существенно снизился.
3. Применение облачных ИИ Агентов (ChatGPT, Claude, Perplexity) идёт в том же тренде что и поисковый трафик, но отдаёт ещё меньше трафика чем поисковые системы. В среднем, происходит снижение на треть переходов на внешние источники.
От себя я добавлю что инициативы Фонда Викимедия перейти от модели существования как дата дистрибьютора, торгуя датасетами и доступом к "высококачественному API" - это всё попытки преодолеть этот кризис. В котором кроме Википедии находятся и значительное число сайтов ориентированных на создание контента и вынужденные менять бизнес модели, например, переходя на пэйволы и ограничивая доступ к контенту.
Поэтому главный мой посыл в том что Фонд Викимедия в целом и Википедия уже много лет как находятся в кризисе, достаточно медленно ползущем чтобы всё не рухнуло, но достаточно явным чтобы за них беспокоиться.
Кто выигрывает от блокировки Википедии? Думаете РуВики? Нет. Даже если они станут не про-государственным, а полностью госпроектом на 100% бюджетном финансировании (если ещё не), то даже в этом случае РуВики станет популярным только если начнётся принуждение поисковых систем ставить ссылки на него, а не на Википедию. Но Гугл на это никогда не пойдет, а Яндекс будет сопротивляться до последнего. Да и как можно было понять ранее, поисковики всё меньше трафика отдают контентным проектам, стараясь держать пользователей в своей экосистеме. Потому что это им выгоднее и ничего более.
В итоге от запрета Википедии в РФ выиграют по списку:
1. Поисковые системы Google и Яндекс (думаю что Google существенно больше)
2. Облачные AI агенты (ChatGPT, Perplexity, Claude и др.)
3. Продавцы коммерческих VPN сервисов
Я не знаю чьими лоббистами являются ратующие за запрет Википедии, но выгодоприобретатели понятны и очевидны.
Ссылки:
[1] https://datareportal.com/reports/digital-2025-exploring-trends-in-wikipedia-traffic
#wikipedia #thoughts #ai #readings
DataReportal – Global Digital Insights
Digital 2025: exploring trends in Wikipedia traffic — DataReportal – Global Digital Insights
An in-depth exploration of some worrying trends in visitor traffic to the world’s 50 most popular and most respected sources of online information.
👍9😱4😢2❤1
Я недавно рассказывал что в качестве хобби занимаюсь написанием коротких наивных фантастических рассказов в стиле утопий и антиутопий. Причём поскольку прозаический опыт у меня ограниченный, я пытаюсь писать их по науке: видение -> синопсис - > пара тестовых глав -> основной текст. Это хорошая разминка для ума для которой я постоянно собираю контекст и наша антиутопическая реальность, конечно, даёт много идей.
Важная часть таких рассказов - это контекст, не фабула произведения, а среда в которой всё происходит. А поскольку сейчас одна из самых остросоциальных тем - это ИИ, то без ИИ тут не обойтись.
У меня есть какое-то число мыслей про такой контекст, а если Вы готовы поделитесь Вашими мыслями, милости прошу в комментарии:
1. Видеть невидимое. С помощью ИИинструменты наблюдения резко усиливаются. Работает сбор данных в недоступных человеку спектрах, радиодиапазонах и границ слышимости.
2. Большие прогностические модели. Непрерывно работающие прогностические модели и ИИ манипулирующий рынками. Длительный кризис фондовых рынков.
3.AI-Free зоны. В которых отключен интернет и любая связь. Там сдают экзамены и ходят на свидания ( чтобы тому кто на него идет ИИ нп подсказывал как себя вести).
Все это именно контекст, фабула по более классическим сценариям про кровь, любовь и риторику.
А какие варианты будущего как контекста видите вы?
#thoughts #writings
Важная часть таких рассказов - это контекст, не фабула произведения, а среда в которой всё происходит. А поскольку сейчас одна из самых остросоциальных тем - это ИИ, то без ИИ тут не обойтись.
У меня есть какое-то число мыслей про такой контекст, а если Вы готовы поделитесь Вашими мыслями, милости прошу в комментарии:
1. Видеть невидимое. С помощью ИИинструменты наблюдения резко усиливаются. Работает сбор данных в недоступных человеку спектрах, радиодиапазонах и границ слышимости.
2. Большие прогностические модели. Непрерывно работающие прогностические модели и ИИ манипулирующий рынками. Длительный кризис фондовых рынков.
3.AI-Free зоны. В которых отключен интернет и любая связь. Там сдают экзамены и ходят на свидания ( чтобы тому кто на него идет ИИ нп подсказывал как себя вести).
Все это именно контекст, фабула по более классическим сценариям про кровь, любовь и риторику.
А какие варианты будущего как контекста видите вы?
#thoughts #writings
❤6👍3✍2🔥1
Я тут было задумал написать лонгрид про стандарт SDMX по распространению статистических баз данных, о том чем он хорош и чем он плох и почему им нельзя пользоваться для публикации данных для бизнеса и необходимо использовать для взаимодействия с международными структурами. Но довольно быстро понял что сбиваюсь про состояние работы со статистическими данными в целом и о глобальном кризисе статистических служб.
А кризис то есть даже если его явно не обозначают и он в комбинации факторов которые можно описать как:
- рост запроса на оперативные данные с частотностью в неделю, день, час и неспособностью статслужб подобное обеспечить
- стремительный рост сбора альтернативных данных и более оперативных и специальных данных собираемых напрямую из ведомств и корпораций
- устаревание компетенций, возможно, безвозвратное из-за неконкурентного уровня зарплат для ИТ спецов, особенно в части работы с данными
- большие ограничения от национальной и международной бюрократии и их комбинации в части сбора и представления данных.
- рост ограничений на открытое распространение данных на фоне торговых войн, информационных войн и вооружённых конфликтов
Например, большая часть статслужб хотя и работают изначально с данными, но к периоду хайпа вокруг ИИ подошли с очень слабыми позициями. Лично я нашёл только у одной статистической службы в мире, у ISTAT в Италии, наличие ИИ помощника по работе с данными и тот был скорее про помощь в поиске данных, чем про инсайты на самих данных.
Поэтому всё это выглядит как уже затянувшийся кризис статистических служб и официальной статистики. Мягче в одних странах и жёстче в других.
#opendata #statistics #thoughts
А кризис то есть даже если его явно не обозначают и он в комбинации факторов которые можно описать как:
- рост запроса на оперативные данные с частотностью в неделю, день, час и неспособностью статслужб подобное обеспечить
- стремительный рост сбора альтернативных данных и более оперативных и специальных данных собираемых напрямую из ведомств и корпораций
- устаревание компетенций, возможно, безвозвратное из-за неконкурентного уровня зарплат для ИТ спецов, особенно в части работы с данными
- большие ограничения от национальной и международной бюрократии и их комбинации в части сбора и представления данных.
- рост ограничений на открытое распространение данных на фоне торговых войн, информационных войн и вооружённых конфликтов
Например, большая часть статслужб хотя и работают изначально с данными, но к периоду хайпа вокруг ИИ подошли с очень слабыми позициями. Лично я нашёл только у одной статистической службы в мире, у ISTAT в Италии, наличие ИИ помощника по работе с данными и тот был скорее про помощь в поиске данных, чем про инсайты на самих данных.
Поэтому всё это выглядит как уже затянувшийся кризис статистических служб и официальной статистики. Мягче в одних странах и жёстче в других.
#opendata #statistics #thoughts
🔥5❤4👍1
Глядя на продолжающийся поток стартапов применяющий ИИ к разным областям работы с данными, наблюдаю явный перекос в сторону ликвидации профессии корпоративных дата аналитиков как класса и замена их "умными дашбордами" и "ИИ агентами".
Ссылки приводить не буду, дабы не рекламировать кого-то без необходимости, но тенденция явная и заметная, а также хорошо понимания потенциальными клиентами, руководством компаний и иными лицами принимающими решения.
Из того что я вижу так то что ИИ реально может исключить аналитиков из цепочки создания аналитических продуктов и оперативной аналитики, но, чем больше это будет происходить тем острее была и остаётся проблема качества данных.
Качество данных и вся "чёрная работа" связанная с их подготовкой, очисткой, валидацией и тд. очень плохо автоматизируется и вот тут-то стартапов возникает куда меньше. Во первых потому что это внутренняя кухня работы с данными и не на поверхности, а во вторых поскольку у технических руководителей почти всегда значительно меньшие бюджеты.
И, конечно же, в третьих, потенциальные решения и продукты не так очевидны. Я лично вообще пока не вижу каких-то быстрореализуемых "идей на поверхности" как автоматизировать создание хороших наборов и баз данных.
Поэтому мои предсказания что работа аналитиков со временем будет распадаться на:
1. Аналитиков по качеству и подготовке данных
2. Программистов и проектировщиков аналитических AI агентов и дашбордов
3. Предметных специалистов которые ещё и могут немного в аналитику.
А вот у дата инженеров всё проще, пока мало что меняется, только объёмы данных растут.
#thoughts #data #dataengineering
Ссылки приводить не буду, дабы не рекламировать кого-то без необходимости, но тенденция явная и заметная, а также хорошо понимания потенциальными клиентами, руководством компаний и иными лицами принимающими решения.
Из того что я вижу так то что ИИ реально может исключить аналитиков из цепочки создания аналитических продуктов и оперативной аналитики, но, чем больше это будет происходить тем острее была и остаётся проблема качества данных.
Качество данных и вся "чёрная работа" связанная с их подготовкой, очисткой, валидацией и тд. очень плохо автоматизируется и вот тут-то стартапов возникает куда меньше. Во первых потому что это внутренняя кухня работы с данными и не на поверхности, а во вторых поскольку у технических руководителей почти всегда значительно меньшие бюджеты.
И, конечно же, в третьих, потенциальные решения и продукты не так очевидны. Я лично вообще пока не вижу каких-то быстрореализуемых "идей на поверхности" как автоматизировать создание хороших наборов и баз данных.
Поэтому мои предсказания что работа аналитиков со временем будет распадаться на:
1. Аналитиков по качеству и подготовке данных
2. Программистов и проектировщиков аналитических AI агентов и дашбордов
3. Предметных специалистов которые ещё и могут немного в аналитику.
А вот у дата инженеров всё проще, пока мало что меняется, только объёмы данных растут.
#thoughts #data #dataengineering
👌11🤔9✍5😢3
В рубрике как это устроено у них, согласно реестру Dateno в Великобритании не менее 174 каталогов данных создано университетами и другими исследовательскими центрами для публикации исследовательских данных. Большинство из них используют для этого сервис Figshare и такие продукты как Elsvier Pure и ePrints. В большинстве случаев публикация данных сочетается с раскрытием других результатов научной деятельности: статьями, изображениями, приложениями к статьям, книгами и так далее.
Это больше чем общее число каталогов данных во многих странах. Пока лишь малая их часть, 13 каталогов индексируется в Dateno где собрано чуть менее 140 тысяч наборов данных поскольку значительная часть этих каталогов не предоставляют простых интерфейсов для индексирования данных. Figshare - это коммерческий провайдер, а многие другие каталоги поддерживают только стандарт OAI-PHM имеющий существенные ограничения, он не позволяет индексировать записи определённого типа (dataset) и не даёт простой возможности индексации ресурсов (файлов) связанных с наборами данных.
Это не является ограничением для таких агрегаторов как OpenAIRE поскольку они собирают все результаты научной деятельности, но ограничивает Dateno индексация в котором ограничена только наборами данных.
Второй важный фактор - это то что в последние годы многие научные данные загружаются сразу в облачные сервисы вроде data.mendeley.com или zenodo.org, а в институциональных репозиториях указаны лишь ссылки на них и, опять же, отсутствуют ссылки на файлы, остаются только ссылки на карточки датасетов в других ресурсах.
Однако даже при этом цифры в Dateno сопоставимы с индексом OpenAIRE где к Великобритании отнесены 168 тысяч наборов данных, но и среди них многое что помечено как "Dataset" там является просто цифровыми объектами отличающимися от научных статей, например, фотографии и презентации.
Можно было бы OpenAIRE использовать как референсный ориентир при индексировании наборов данных, но и он, увы, сильно неполон.
По моим оценкам всего в Великобритании от 300 до 500 тысяч исследовательских наборов данных рассеянных по сотням репозиториям научных данных и облачным сервисам. Постепенно они будут проиндексированы в Dateno, а пока можно констатировать что индексировать каталоги открытых данных и базы статистики гораздо проще в плане количества проиндексированных наборов данных.
#thoughts #dateno #datasets
Это больше чем общее число каталогов данных во многих странах. Пока лишь малая их часть, 13 каталогов индексируется в Dateno где собрано чуть менее 140 тысяч наборов данных поскольку значительная часть этих каталогов не предоставляют простых интерфейсов для индексирования данных. Figshare - это коммерческий провайдер, а многие другие каталоги поддерживают только стандарт OAI-PHM имеющий существенные ограничения, он не позволяет индексировать записи определённого типа (dataset) и не даёт простой возможности индексации ресурсов (файлов) связанных с наборами данных.
Это не является ограничением для таких агрегаторов как OpenAIRE поскольку они собирают все результаты научной деятельности, но ограничивает Dateno индексация в котором ограничена только наборами данных.
Второй важный фактор - это то что в последние годы многие научные данные загружаются сразу в облачные сервисы вроде data.mendeley.com или zenodo.org, а в институциональных репозиториях указаны лишь ссылки на них и, опять же, отсутствуют ссылки на файлы, остаются только ссылки на карточки датасетов в других ресурсах.
Однако даже при этом цифры в Dateno сопоставимы с индексом OpenAIRE где к Великобритании отнесены 168 тысяч наборов данных, но и среди них многое что помечено как "Dataset" там является просто цифровыми объектами отличающимися от научных статей, например, фотографии и презентации.
Можно было бы OpenAIRE использовать как референсный ориентир при индексировании наборов данных, но и он, увы, сильно неполон.
По моим оценкам всего в Великобритании от 300 до 500 тысяч исследовательских наборов данных рассеянных по сотням репозиториям научных данных и облачным сервисам. Постепенно они будут проиндексированы в Dateno, а пока можно констатировать что индексировать каталоги открытых данных и базы статистики гораздо проще в плане количества проиндексированных наборов данных.
#thoughts #dateno #datasets
✍3👌3
Подробная статья о состоянии поиска Google с точки зрения долгосрочных инвестиций [1]. Всё, казалось бы, очевидно что ИИ имеет очень сильный потенциал трансформировать Google Search и то проблема в изначальной рекламной модели Google как основе монетизации. Про это говорят много и всё активнее, на фоне разговоров что потенциально некоторые вендоры мобильных устройств могут перейти на другие поисковые системы вроде того же Perplexity. Но тут автор излагает всё довольно подробно и не даёт прогноза что у Google поисковый бизнес поломается, но говорит что сильно поменяется.
В том числе сравнивая ИИ поиск с кнопкой "I'm feeling lucky" когда пользователь получал результат сразу, без просмотра рекламных ссылок и то что Google терял около $100 миллионов в год в 2010 году из-за этой кнопки.
Почитать полезно чтобы задуматься о будущей трансформации Google и потенциальных изменениях бизнес модели поиска.
Можно с этой же точки зрения посмотреть на Яндекс, но у Яндекса, по сравнению с Google есть то потенциальное преимущество что постепенно из поискового индекса Google российские сайты выпадают и происходит это по разным причинам, но, в основном, из-за ограничений доступа из не-российских подсетей. Это ограничение бывает мягким в виде запретов в robots.txt, более жестким через ограничения на CDN и очень жёсткими через блокировки всех подсетей не относящихся к российской юрисдикции. В случае Google замерить это сложно, но в случае того же Интернет-архива я это наблюдаю уже несколько лет.
Что, впрочем, поможет лишь отчасти если ряд мобильных вендоров (Samsung, Huawei) отдадут приоритет AI поиску в своих устройствах.
Ссылки:
[1] https://www.speedwellmemos.com/p/google-shut-the-door-on-competition?
#thoughts #search #google #ai
В том числе сравнивая ИИ поиск с кнопкой "I'm feeling lucky" когда пользователь получал результат сразу, без просмотра рекламных ссылок и то что Google терял около $100 миллионов в год в 2010 году из-за этой кнопки.
Почитать полезно чтобы задуматься о будущей трансформации Google и потенциальных изменениях бизнес модели поиска.
Можно с этой же точки зрения посмотреть на Яндекс, но у Яндекса, по сравнению с Google есть то потенциальное преимущество что постепенно из поискового индекса Google российские сайты выпадают и происходит это по разным причинам, но, в основном, из-за ограничений доступа из не-российских подсетей. Это ограничение бывает мягким в виде запретов в robots.txt, более жестким через ограничения на CDN и очень жёсткими через блокировки всех подсетей не относящихся к российской юрисдикции. В случае Google замерить это сложно, но в случае того же Интернет-архива я это наблюдаю уже несколько лет.
Что, впрочем, поможет лишь отчасти если ряд мобильных вендоров (Samsung, Huawei) отдадут приоритет AI поиску в своих устройствах.
Ссылки:
[1] https://www.speedwellmemos.com/p/google-shut-the-door-on-competition?
#thoughts #search #google #ai
Speedwellmemos
Google Shut the Door on Competition, AI Swung it Back Open
Assessing Risks to Google's Business Model and How AI Imapcts the Competitive Landscape
❤5✍1
Некоторые мысли вслух относительно организации своей и не только своей работы. Я лично довольно давно увлекался разными инструментами и подходами к самоорганизации. Какие-то из них самоочевидны, а какие-то - это хорошо обновлённое старое, а не что-то новое.
Один из таких подходов - это рабочий журнал.
Если какая-либо задача не является на 100% очевидной и требует каких-либо проверок гипотез, проверки кода или инструментов, то очень хорошая практика в том чтобы вести журнал. Я его называю рабочим или аналитическим журналом, в зависимости от типа задачи.
Он напоминает список задач и экспериментов которые пишут сами себе некоторые продвинутые LLM расписывая логику рассуждений и это делает эти LLM, не всегда, но часто, эффективнее работы аналитиков или разработчиков джуниоров.
В ведении рабочего журнала нет ничего нового, это, по сути, адаптированный к ИТ и аналитическим задачам журнал экспериментов. Итогом ведения журнала почти всегда является, либо список конкретных задач, либо решение поставленной задачи по мере его достижения.
Лично я не всегда, но всё чаще веду такой журнал при какой-либо аналитической работе, по анализу источников данных, по подготовке документов и тд. Даже когда какие-то художественные тексты пишу, тоже стараюсь вести подобные структурированные заметки именно в форме журнала.
Своими техническими журналами я поделиться, увы, не могу, они очень специализированы для того что я делаю. Может быть когда-нибудь смогу поделиться таким журналом по подготовке какого-либо аналитического документа.
Но для тех кто сталкивается с регулярным вопросом "А чем ты там занимался?" - это важный и содержательный ответ. Подход достаточно универсальный для задач занимающих время более 1 часа.
Кстати, на ту же тему, уже не раз сталкивался с рассуждениями о том как выбирать сотрудников программистов/аналитиков/дата-инженеров и тд. Стандартный подход - это брать людей с опытом работы в FAANG и большим опытом в индустрии и работает он так себе. А вот один из важных критериев - это способность документировать свою работу.
Документирование - это одно из важных отличий senior специалистов от начинающих.
А какие рабочие практики и лайфхаки Вы используете?
#thoughts #it #lifehacks
Один из таких подходов - это рабочий журнал.
Если какая-либо задача не является на 100% очевидной и требует каких-либо проверок гипотез, проверки кода или инструментов, то очень хорошая практика в том чтобы вести журнал. Я его называю рабочим или аналитическим журналом, в зависимости от типа задачи.
Он напоминает список задач и экспериментов которые пишут сами себе некоторые продвинутые LLM расписывая логику рассуждений и это делает эти LLM, не всегда, но часто, эффективнее работы аналитиков или разработчиков джуниоров.
В ведении рабочего журнала нет ничего нового, это, по сути, адаптированный к ИТ и аналитическим задачам журнал экспериментов. Итогом ведения журнала почти всегда является, либо список конкретных задач, либо решение поставленной задачи по мере его достижения.
Лично я не всегда, но всё чаще веду такой журнал при какой-либо аналитической работе, по анализу источников данных, по подготовке документов и тд. Даже когда какие-то художественные тексты пишу, тоже стараюсь вести подобные структурированные заметки именно в форме журнала.
Своими техническими журналами я поделиться, увы, не могу, они очень специализированы для того что я делаю. Может быть когда-нибудь смогу поделиться таким журналом по подготовке какого-либо аналитического документа.
Но для тех кто сталкивается с регулярным вопросом "А чем ты там занимался?" - это важный и содержательный ответ. Подход достаточно универсальный для задач занимающих время более 1 часа.
Кстати, на ту же тему, уже не раз сталкивался с рассуждениями о том как выбирать сотрудников программистов/аналитиков/дата-инженеров и тд. Стандартный подход - это брать людей с опытом работы в FAANG и большим опытом в индустрии и работает он так себе. А вот один из важных критериев - это способность документировать свою работу.
Документирование - это одно из важных отличий senior специалистов от начинающих.
А какие рабочие практики и лайфхаки Вы используете?
#thoughts #it #lifehacks
🔥22💯7👍4✍3❤1
Некоторые мысли вслух:
1. Интересно когда наступит момент когда проекты или сайты компаний будут динамически создаваться ИИ? Буквально, по 2-3 страницам текста от начала и до конца. Полноценного AGI для этого не нужно, нужно лишь доступ ИИ к хостинг провайдеру через API и побольше времени чем одиночный запрос. Я так понимаю что технологическая готовность к этому есть и ждать осталось недолго. Рынок веб разработки это если не разрушит, то сильно разворошит. А может уже началось, а я ещё не отследил такое.
2. Рано или поздно кто-то натравит LLM'ки на глубокий анализ текстов госконтрактов, законов и тд. Уже напрашивается, правда требует хорошего понимания предметной области, но поиск "красных флажков" может выйти на новый уровень. Но не в России в ближайшие, а может быть и в не ближайшие годы тоже.
#thoughts
1. Интересно когда наступит момент когда проекты или сайты компаний будут динамически создаваться ИИ? Буквально, по 2-3 страницам текста от начала и до конца. Полноценного AGI для этого не нужно, нужно лишь доступ ИИ к хостинг провайдеру через API и побольше времени чем одиночный запрос. Я так понимаю что технологическая готовность к этому есть и ждать осталось недолго. Рынок веб разработки это если не разрушит, то сильно разворошит. А может уже началось, а я ещё не отследил такое.
2. Рано или поздно кто-то натравит LLM'ки на глубокий анализ текстов госконтрактов, законов и тд. Уже напрашивается, правда требует хорошего понимания предметной области, но поиск "красных флажков" может выйти на новый уровень. Но не в России в ближайшие, а может быть и в не ближайшие годы тоже.
#thoughts
👍10⚡5🔥2✍1
Многие ждут когда в США появится официальный сайт AI.gov пока он редиректит на сайт Белого Дома, но он много где уже проанонсирован и там ожидаются наиболее полные материалы по госполитике в отношении ИИ в США.
Я вот, тем временем, наблюдаю как регуляторы думают про применение ИИ в целом и в госсекторе, вопрос к тому как нормативка будет развиваться очень много поскольку регулирование ИИ будет касаться и цензурирования, и цены ошибки, и применения в критических отраслях, и передача данных между юрисдикциями и ещё много чего.
Но некоторые изменения мне представляются уже очень очевидными:
1. Практически неизбежно, вопрос лишь когда, будет аттестация и аккредитация ИИ. Позитивное регулирование может исходить из создания "реестров доверенных моделей и сервисов", негативное регулирование в блокировках и запрете использования определённых моделей и сервисов или запрете вообще всех кроме ограниченного числа.
2. Применительно к ИИ в госсекторе неизбежна централизация и G2G внутригосударственные облачные сервисы. Рано или поздно возникнут запреты на использование облачных частных продуктов и будут разворачиваться ИИ модели и сервисы на уровне регионов или отраслевых министерств или на уровне центрального правительства как G2G услуги. Причин несколько, но главная - ограничения на передачу персональных данных и гарантия что используемые данные не будут использоваться для обогащения большой облачной модели. Я знаю страны и регионы некоторых стран где такое уже практикуют.
3. Реорганизация экзаменов, постепенно во всем мире. Их проведение в местах с гарантированным отсутствием интернетаи электричества. Почему? Только сдавать мобильные устройства недостаточно, будут пользоваться умными очками или иными скрытыми устройствами. Договорится со всеми крупнейшими облачными сервисами ИИ о том чтобы они не работали на время экзаменов тоже будет сложно, блокировка на страновом уровне тоже будет иметь ограниченный эффект. Только полное отсутствие интернета и изъятие устройств достаточно мощных чтобы в них работать SLM (малые языковые модели).
4. Реорганизация и кризис медицинских услуг особенно в странах где медицина стоит очень дорого. Стремительное применение ИИ для диагностики (уже происходит) и отдельное регулирование этой сферы (тоже уже происходит). Специалисты в этой области могут рассказать больше, но в целом применение ИИ в медицине - это та область которой игроки созданию ИИ оправдывают их создание и инвестиции более чем во всём остальном.
5. Страновые соглашения крупных игроков в области ИИ с национальными правительствами малых стран. У многих небольших развивающихся стран и стран с малыми доходами не будет достаточного числа ресурсов чтобы развернуть свои ИИ модели для внутригосударственных нужд, особенно с учётом того что их языки могут иметь очень немного носителей и очень мало текстов. В какой-то момент крупные игроки начнут заключать страновые соглашения по предоставлению своих продуктов с доработкой под эти языки (кстати ИИ от Яндекса пока понимает армянский язык лучше чем у всех международных игроков, просто для иллюстрации).
#ai #regulation #thoughts
Я вот, тем временем, наблюдаю как регуляторы думают про применение ИИ в целом и в госсекторе, вопрос к тому как нормативка будет развиваться очень много поскольку регулирование ИИ будет касаться и цензурирования, и цены ошибки, и применения в критических отраслях, и передача данных между юрисдикциями и ещё много чего.
Но некоторые изменения мне представляются уже очень очевидными:
1. Практически неизбежно, вопрос лишь когда, будет аттестация и аккредитация ИИ. Позитивное регулирование может исходить из создания "реестров доверенных моделей и сервисов", негативное регулирование в блокировках и запрете использования определённых моделей и сервисов или запрете вообще всех кроме ограниченного числа.
2. Применительно к ИИ в госсекторе неизбежна централизация и G2G внутригосударственные облачные сервисы. Рано или поздно возникнут запреты на использование облачных частных продуктов и будут разворачиваться ИИ модели и сервисы на уровне регионов или отраслевых министерств или на уровне центрального правительства как G2G услуги. Причин несколько, но главная - ограничения на передачу персональных данных и гарантия что используемые данные не будут использоваться для обогащения большой облачной модели. Я знаю страны и регионы некоторых стран где такое уже практикуют.
3. Реорганизация экзаменов, постепенно во всем мире. Их проведение в местах с гарантированным отсутствием интернета
4. Реорганизация и кризис медицинских услуг особенно в странах где медицина стоит очень дорого. Стремительное применение ИИ для диагностики (уже происходит) и отдельное регулирование этой сферы (тоже уже происходит). Специалисты в этой области могут рассказать больше, но в целом применение ИИ в медицине - это та область которой игроки созданию ИИ оправдывают их создание и инвестиции более чем во всём остальном.
5. Страновые соглашения крупных игроков в области ИИ с национальными правительствами малых стран. У многих небольших развивающихся стран и стран с малыми доходами не будет достаточного числа ресурсов чтобы развернуть свои ИИ модели для внутригосударственных нужд, особенно с учётом того что их языки могут иметь очень немного носителей и очень мало текстов. В какой-то момент крупные игроки начнут заключать страновые соглашения по предоставлению своих продуктов с доработкой под эти языки (кстати ИИ от Яндекса пока понимает армянский язык лучше чем у всех международных игроков, просто для иллюстрации).
#ai #regulation #thoughts
👍10✍7⚡2❤2
На днях я решил проинвентаризировать свои презентации за 5 лет и обнаружил что у меня их какое-то чрезмерное количество и недостаточно организованное. Подумываю о том чтобы хотя бы по части из них проводить открытые вебинары (уж не знаю стоит ли делать платные вебинары, хотя иногда и выступаю на коммерческой основе).
И вот я, наконец-то, чувствую что восстановился после COVID'а, прошло много лет, но реально два года после 2020 ощущение было ослабленности сознания, потом получше, но все публичные выступления я резко сократил. Теперь ощущения сильно лучше, как минимум я перестал опасаться выступать на большую аудиторию и, помимо работы над Dateno, время от времени рассказываю о чём-то новом и старом.
Что думаете, на какие темы стоило бы провести вебинар/вебинары?
Вот список
Государство, данные и ИИ
- Применение ИИ для госсектора
- Управление основанное на данных
- Инвентаризация данных. Объекты, подходы, инструменты
- Ключевые наборы данных и их поиск и инвентаризация
- Реестры государственных систем, государственных ресурсов и НСИ
- Открытый государственный код
- Искусственный интеллект в правоохранительной системе. Миф или реальность?
- Этика работы с данными и ИИ
Дата аналитика и инженерия
- Application of neural networks for tasks of automatic identification of semantic data types
- Альтернативные данные (о показателях за пределами официальной статистики)
- Мастер классы: ищем данные, чистим и структурируем данные
- Контроль качества данных
Открытые данные
- Открытые данные в мире
- Открытые данные как основа госполитики
- Поиск данных (data discovery) для дата проектов
- Городские и гиперлокальные данные в мире
- Sharing Data for Disaster Response and Recovery Programs
Открытые API
- Открытые API. Основы
- Открытые API. Платформы и сообщества
Работа с данными для исследователей
- Практика использования DuckDB для работы с большими исследовательскими данными
- Дата инженерия в цифровой гуманитаристике
- Сервисы инфраструктуры данных для исследователей
Цифровая и веб архивация
- Практика и особенности экстренной архивации веб-ресурсов
- Введение в цифровую архивацию
- Веб-архивация
- Архивация специализированных ресурсов
- Интернет архив с точки зрения цифрового архивиста
- Национальный цифровой архив. Цифровая архивация медиа
- Цифровая архивация. Подходы и практика
Журналистика и общественный контроль
- Скрытые данные / Какие данные спрятаны в госсайтах?
- Дата-журналистика в контексте доступности источников данных
- Приватность мобильных приложений
- Слежка через государственные мобильные приложения
- О необходимости контроля и аудита ADM- систем
- Дата расследования
- Нормативная открытость
- Открытость информационных систем нормотворчества
- Простой и понятный русский язык
#thoughts #presentations
И вот я, наконец-то, чувствую что восстановился после COVID'а, прошло много лет, но реально два года после 2020 ощущение было ослабленности сознания, потом получше, но все публичные выступления я резко сократил. Теперь ощущения сильно лучше, как минимум я перестал опасаться выступать на большую аудиторию и, помимо работы над Dateno, время от времени рассказываю о чём-то новом и старом.
Что думаете, на какие темы стоило бы провести вебинар/вебинары?
Вот список
Государство, данные и ИИ
- Применение ИИ для госсектора
- Управление основанное на данных
- Инвентаризация данных. Объекты, подходы, инструменты
- Ключевые наборы данных и их поиск и инвентаризация
- Реестры государственных систем, государственных ресурсов и НСИ
- Открытый государственный код
- Искусственный интеллект в правоохранительной системе. Миф или реальность?
- Этика работы с данными и ИИ
Дата аналитика и инженерия
- Application of neural networks for tasks of automatic identification of semantic data types
- Альтернативные данные (о показателях за пределами официальной статистики)
- Мастер классы: ищем данные, чистим и структурируем данные
- Контроль качества данных
Открытые данные
- Открытые данные в мире
- Открытые данные как основа госполитики
- Поиск данных (data discovery) для дата проектов
- Городские и гиперлокальные данные в мире
- Sharing Data for Disaster Response and Recovery Programs
Открытые API
- Открытые API. Основы
- Открытые API. Платформы и сообщества
Работа с данными для исследователей
- Практика использования DuckDB для работы с большими исследовательскими данными
- Дата инженерия в цифровой гуманитаристике
- Сервисы инфраструктуры данных для исследователей
Цифровая и веб архивация
- Практика и особенности экстренной архивации веб-ресурсов
- Введение в цифровую архивацию
- Веб-архивация
- Архивация специализированных ресурсов
- Интернет архив с точки зрения цифрового архивиста
- Национальный цифровой архив. Цифровая архивация медиа
- Цифровая архивация. Подходы и практика
Журналистика и общественный контроль
- Скрытые данные / Какие данные спрятаны в госсайтах?
- Дата-журналистика в контексте доступности источников данных
- Приватность мобильных приложений
- Слежка через государственные мобильные приложения
- О необходимости контроля и аудита ADM- систем
- Дата расследования
- Нормативная открытость
- Открытость информационных систем нормотворчества
- Простой и понятный русский язык
#thoughts #presentations
👍30❤9⚡5🔥1
В продолжение про NAO и другие инструменты вайб кодинга такие как Cursor, Copilot и тд. Их становится всё больше, хайпа вокруг них тоже немало. Что с этим делать и как к этому относиться?
1. AI инструменты для программистов явление обоюдоострое, чрезвычайно полезная там где они оттестированы и вредны там где нет. Из личного опыта, Copilot прекрасно обогащает CSV файлы по промпту. Например, грузишь CSV файл с перечнем названий стран на итальянском и просишь создать и заполнить колонку с их кодом из справочника ISO3166-1. А вот, например, запрос к Claude 3.5 (не самая мощная модель, да) на то чтобы получить рекомендации по оптимизации кода, в 2-х из 5-ти рекомендаций он выдал лютые глюки с несуществующими функциями.
2. Тем не менее в руках senior и middle разработчиков это сильное подспорье, способное значительно облегчить работу в очень многих задачах. Причём чем опытнее разработчик тем эффективнее будет инструмент. Правда не все разработчики старой школы готовы ИИ агентами пользоваться.
3. И наоборот, я бы поостерёгся брать на работу джуниоров-вайбкодеров потому что "важное не ударить, а знать где ударить". Последствия могут быть плохопредсказуемыми и лично я придерживаюсь мнения что не набив шишек на реальной работе вайбкодить нельзя категорически.
4. При этом применение LLM для работы с данными значительно сложнее. Почему? Потому что открытого кода и кусочков кода в сети безграничное количество, многие не будут опасаться отправлять свой код в облачные LLM, если только это не код каких-то уникальных алгоритмов, а это уже редкость. А вот данные могут содержать персональные данные, коммерческую тайну и ещё много чего. Использовать для анализа корп данных облачные LLM будет плохой практикой.
5. AI инструменты для разработчиков пытаются сделать повседневными. Что это значит? Максимальное упрощение пользовательского пути до ИИ агента. Примеры Cursor, NAO и ряда других AI IDE это про это. Такие инструменты создают ситуацию когда ты можешь отправить свой код или данные в любой момент в LLM, как говорится, одно неосторожное движение и... Для создателей инструментов это то о чём многие мечтали, наконец-то можно делать IDE зависящее от облачных сервисов и разработчики будут соглашаться авторизовываться и работать в облаке. IDE по подписке в общем. Для разработчиков будет развилка, открытые бесплатные IDE вроде VSCodium или продвинутые зависящие от облачных ИИ агентов.
#thoughts #ai
1. AI инструменты для программистов явление обоюдоострое, чрезвычайно полезная там где они оттестированы и вредны там где нет. Из личного опыта, Copilot прекрасно обогащает CSV файлы по промпту. Например, грузишь CSV файл с перечнем названий стран на итальянском и просишь создать и заполнить колонку с их кодом из справочника ISO3166-1. А вот, например, запрос к Claude 3.5 (не самая мощная модель, да) на то чтобы получить рекомендации по оптимизации кода, в 2-х из 5-ти рекомендаций он выдал лютые глюки с несуществующими функциями.
2. Тем не менее в руках senior и middle разработчиков это сильное подспорье, способное значительно облегчить работу в очень многих задачах. Причём чем опытнее разработчик тем эффективнее будет инструмент. Правда не все разработчики старой школы готовы ИИ агентами пользоваться.
3. И наоборот, я бы поостерёгся брать на работу джуниоров-вайбкодеров потому что "важное не ударить, а знать где ударить". Последствия могут быть плохопредсказуемыми и лично я придерживаюсь мнения что не набив шишек на реальной работе вайбкодить нельзя категорически.
4. При этом применение LLM для работы с данными значительно сложнее. Почему? Потому что открытого кода и кусочков кода в сети безграничное количество, многие не будут опасаться отправлять свой код в облачные LLM, если только это не код каких-то уникальных алгоритмов, а это уже редкость. А вот данные могут содержать персональные данные, коммерческую тайну и ещё много чего. Использовать для анализа корп данных облачные LLM будет плохой практикой.
5. AI инструменты для разработчиков пытаются сделать повседневными. Что это значит? Максимальное упрощение пользовательского пути до ИИ агента. Примеры Cursor, NAO и ряда других AI IDE это про это. Такие инструменты создают ситуацию когда ты можешь отправить свой код или данные в любой момент в LLM, как говорится, одно неосторожное движение и... Для создателей инструментов это то о чём многие мечтали, наконец-то можно делать IDE зависящее от облачных сервисов и разработчики будут соглашаться авторизовываться и работать в облаке. IDE по подписке в общем. Для разработчиков будет развилка, открытые бесплатные IDE вроде VSCodium или продвинутые зависящие от облачных ИИ агентов.
#thoughts #ai
✍5⚡1❤1👍1💯1
Тренды и мысли по поводу данных и ИИ. Собрал в кучу размышления последних недель:
1. Почти все LLM умеют в анализ текстовых и легко преобразуемых в тексты данных и документов и совсем почти не умеют в бинарное, например, разобрать какой-нибудь geopackage или 3D модель или файлы parquet. Интересно появятся ли сервисы умеющие такое или надо делать своё уже?
2. MCP протокол внедряется повсеместно включая сервисы которые предлагают быстрое создание MCP на базе API. При том что MCP выглядит кривым-косым и неправильным архитектурно. Нужны и другие интерфейсы к API и к данным. Причём для данных MCP кажется особенно кривым инструментом. Но тренд явный и нарастающий
3. Корп каталоги данных по прежнему актуальны для задач комплаенса и для организации работы инженеров и data scientist'ов когда есть условно от 5 дата команд и более, но в целом это уже сложившийся и постепенно отмирающий, не развивающийся рынок.
4. Нет сервисов дата документации, не считая Castor'а который купили Coalesce. Сервисы документирования API есть, создания документации к интерфейсам есть, а дата документации автоматизированной нет.
5. Ведущие ИИ агенты хорошо анализируют Excel файлы, и PDF файлы, файлы MS Word, но не дают потокового API для этих задач.
6. Как интегрировать веб-архивацию и LLMки сейчас? Сделать универсальный MCP интерфейс к WARC файлам? Рынка здесь нет, польза может быть.
7. DuckDB массово используется как ядро для огромного числа продуктов, коммерческих, открытых, некоммерческих и тд. Хочешь сделать инструмент для манипуляции данными? DuckDB самый очевидный ответ, альтернативы Polars или Clickhouse
#thoughts #data #dataengineering
1. Почти все LLM умеют в анализ текстовых и легко преобразуемых в тексты данных и документов и совсем почти не умеют в бинарное, например, разобрать какой-нибудь geopackage или 3D модель или файлы parquet. Интересно появятся ли сервисы умеющие такое или надо делать своё уже?
2. MCP протокол внедряется повсеместно включая сервисы которые предлагают быстрое создание MCP на базе API. При том что MCP выглядит кривым-косым и неправильным архитектурно. Нужны и другие интерфейсы к API и к данным. Причём для данных MCP кажется особенно кривым инструментом. Но тренд явный и нарастающий
3. Корп каталоги данных по прежнему актуальны для задач комплаенса и для организации работы инженеров и data scientist'ов когда есть условно от 5 дата команд и более, но в целом это уже сложившийся и постепенно отмирающий, не развивающийся рынок.
4. Нет сервисов дата документации, не считая Castor'а который купили Coalesce. Сервисы документирования API есть, создания документации к интерфейсам есть, а дата документации автоматизированной нет.
5. Ведущие ИИ агенты хорошо анализируют Excel файлы, и PDF файлы, файлы MS Word, но не дают потокового API для этих задач.
6. Как интегрировать веб-архивацию и LLMки сейчас? Сделать универсальный MCP интерфейс к WARC файлам? Рынка здесь нет, польза может быть.
7. DuckDB массово используется как ядро для огромного числа продуктов, коммерческих, открытых, некоммерческих и тд. Хочешь сделать инструмент для манипуляции данными? DuckDB самый очевидный ответ, альтернативы Polars или Clickhouse
#thoughts #data #dataengineering
⚡7✍4👍4