A framework for Al-ready data [1] свежий доклад от Open Data Institute о том как публиковать наборы данных для машинного обучения. Характерно что ссылаются на стандарт Croissant и Hugging Face и не ссылаются на Frictionless Data.
Всё выглядит разумно с примерами из публикации открытых данных и открытой научной инфраструктуры.
Ссылки:
[1] https://theodi.org/insights/reports/a-framework-for-ai-ready-data/
#opendsata #readings #standards
Всё выглядит разумно с примерами из публикации открытых данных и открытой научной инфраструктуры.
Ссылки:
[1] https://theodi.org/insights/reports/a-framework-for-ai-ready-data/
#opendsata #readings #standards
Anthropic запустили программу AI for Science [1] обещая выдавать существенное количество кредитов для запросов к их AI моделям. Акцент в их программе на проекты в областях биологии и наук о жизни, обещают выдавать кредитов до 20 тысяч USD, так что это вполне себе серьёзные гранты для небольших целевых проектов. Ограничения по странам не указаны, но указание научного учреждения и ещё многих других данных в заявке обязательно.
И на близкую тему Charting the AI for Good Landscape – A New Look [2] о инициативах в области ИИ затрагивающих НКО и инициативы по улучшению жизни, так называемые AI for Good. Применение AI в науках о жизни - это почти всегда AI for Good, так что всё это очень взаимосвязано.
Ссылки:
[1] https://www.anthropic.com/news/ai-for-science-program
[2] https://data.org/news/charting-the-ai-for-good-landscape-a-new-look/
#openaccess #openscience #ai #grants #readings
И на близкую тему Charting the AI for Good Landscape – A New Look [2] о инициативах в области ИИ затрагивающих НКО и инициативы по улучшению жизни, так называемые AI for Good. Применение AI в науках о жизни - это почти всегда AI for Good, так что всё это очень взаимосвязано.
Ссылки:
[1] https://www.anthropic.com/news/ai-for-science-program
[2] https://data.org/news/charting-the-ai-for-good-landscape-a-new-look/
#openaccess #openscience #ai #grants #readings
Anthropic
Introducing Anthropic's AI for Science Program
Anthropic is an AI safety and research company that's working to build reliable, interpretable, and steerable AI systems.
How Bad Is China’s Economy? The Data Needed to Answer Is Vanishing [1] статья в WSJ (под пэйволом, но можно прослушать в аудио) о том что в Китае перестали публиковать сотни статистических показателей на фоне торговой войны с США. Что-то напоминает, да?
Сейчас будет взлёт спроса на альтернативные данные о состоянии китайской экономики, получить их будет не так просто, но реалистично.
Впрочем всегда есть официальная статистика которую альтернативными способами не получить. Лично мне ещё интересно что будет с данными о внешней торговле Китая. В РФ её закрыли в первую очередь, хочется надеяться что в Китае она останется доступной.
Ссылки:
[1] https://www.wsj.com/world/china/china-economy-data-missing-096cac9a
#opendata #closeddata #china #statistics #tradewars
Сейчас будет взлёт спроса на альтернативные данные о состоянии китайской экономики, получить их будет не так просто, но реалистично.
Впрочем всегда есть официальная статистика которую альтернативными способами не получить. Лично мне ещё интересно что будет с данными о внешней торговле Китая. В РФ её закрыли в первую очередь, хочется надеяться что в Китае она останется доступной.
Ссылки:
[1] https://www.wsj.com/world/china/china-economy-data-missing-096cac9a
#opendata #closeddata #china #statistics #tradewars
В продолжение короткого анализа плана мероприятий по реформе статистики в РФ напомню мои многочисленные тексты про статистику в России и не только:
- Российская статистика: немашиночитаемая институциональная фрагментация - о том российская статистика рассеяна по сотням сайтов
- Статистика как дата продукт - о том как рассматривать статистику как дата продукты
- Дашборд Германии (Dashboard Deutchland) - о том как публикуются статистические индикаторы статслужбой ФРГ
- Обзор сайта Office for National Statistics в Великобритании - о том как раскрывают данные статслужбы Великобритании
- Обзор геопространственной статистики Мексики - от их Национального института статистики
- Признаки хорошей статистической системы - о том как можно публиковать статданные удобным образом
- О статслужбах Канады и Хорватии - и о том как официальные сайты статслужб становятся поисковиком
- О DBNomics - французском проекте по агрегации статистики со всего мира.
- Публикация данных IMF - о том как публикуются данные международного валютного фонда
И многое другое по тегу #statistics тут в телеграм канале.
Учитывая что с самого начала я заводил этот телеграм канал как базу заметок, уже чувствую необходимость превратить его в базу знаний с автоматической синхронизацией того что пишу здесь, в том что разворачивалось бы как Markdown тексты с движком вроде Docusaurus или аналогичными Wiki подобными open source продуктами. Или с автоматической синхронизацией с Obsidian или Notion.
#statistics #readings
- Российская статистика: немашиночитаемая институциональная фрагментация - о том российская статистика рассеяна по сотням сайтов
- Статистика как дата продукт - о том как рассматривать статистику как дата продукты
- Дашборд Германии (Dashboard Deutchland) - о том как публикуются статистические индикаторы статслужбой ФРГ
- Обзор сайта Office for National Statistics в Великобритании - о том как раскрывают данные статслужбы Великобритании
- Обзор геопространственной статистики Мексики - от их Национального института статистики
- Признаки хорошей статистической системы - о том как можно публиковать статданные удобным образом
- О статслужбах Канады и Хорватии - и о том как официальные сайты статслужб становятся поисковиком
- О DBNomics - французском проекте по агрегации статистики со всего мира.
- Публикация данных IMF - о том как публикуются данные международного валютного фонда
И многое другое по тегу #statistics тут в телеграм канале.
Учитывая что с самого начала я заводил этот телеграм канал как базу заметок, уже чувствую необходимость превратить его в базу знаний с автоматической синхронизацией того что пишу здесь, в том что разворачивалось бы как Markdown тексты с движком вроде Docusaurus или аналогичными Wiki подобными open source продуктами. Или с автоматической синхронизацией с Obsidian или Notion.
#statistics #readings
Telegram
Ivan Begtin
По поводу свежего документа с планом мероприятий по реализации Стратегии развития системы государственной статистики и Росстата до 2030 года [1] принятого распоряжением Правительства РФ 30 апреля.
Опишу тезисно и сжато по результатам беглого прочтения.
…
Опишу тезисно и сжато по результатам беглого прочтения.
…
В продолжение про форматы файлов и применение CSV vs Parquet, реальная разница ощущается на больших объёмах и когда работаешь с файлами без чётких спецификаций.
Вот приведу несколько примеров:
1. Статистические данные одного крупного международного агентства, сравнительно среднего объёма в CSV файлах в десятки гигабайт и сотнях миллионов строк. Какая-либо информация о файлах отсутствует, просто выложены дампами для массовой выгрузки (bulk download). Большая часть инструментов при автоматическом парсинге файлов выдаёт что у них кодировка us-ascii, но в итоге оказывается что она windows-1250 (Центрально и Восточно европейская). Причём символы выдающие эту кодировку начинаются где-то очень далеко при обработке файлов. Механизмы автоидентификации кодировки почти все используют куски файла, а не его целиком, в результате нужно понаступать на множество грабель прежде чем настроить автоматическое преобразование этих файлов в другие форматы. Могло бы быть проще будь файлы в кодировке UTF-8, или вообще не в CSV, а в Parquet, к примеру.
2. Файлы Parquet в 800MB и 3.5GB со статистикой международной торговли. Первый может быть развернут в примерно 14GB CSV файл, второй в примерно 56GB. Это сотни миллионов и даже миллиарды записей. Аналитические запросы к таким файлам, на среднем железе, выполняются очень долго и поэтому Parquet файлы необходимо разрезать на множество файлов поменьше по продукции или по странам, в зависимости от задач применения. Но и разрезка больших Parquet файлов весьма ресурсоёмкая задача если пользоваться SQL запросами на копирование. В этом случае большие CSV файлы проще и быстрее обрабатывать потоковым образом. Проблема именно в размере Parquet файлов и решается она дистрибуцией их в меньшем размере
3. В "дикой природе" на порталах открытых данных в мире CSV файлы слишком часто публикуются просто как экспорт Excel файлов которые, в свою очередь, могут не иметь нормальную табличную структуру, а имеют множество заголовков, отклонений и тд, в общем-то не рассчитанных на автоматическую обработку, не говоря уже о разнообразных кодировках. Вручную во всем этом разумеется, можно разобраться, а автоматический анализ сильно затрудняется. Например, попытка натравить duckdb на эти файлы лишь в чуть более 50% случаев заканчивается успехом, в основном потому что duckdb не умеет разные кодировки. Альтернативные способы лучше читают файлы, но существенно медленнее.
4. Один из крупных порталов международной статистики отдаёт данные статистики в CSV формате внутри файлов заархивированных 7z. Это десятки гигабайт в сжатом виде и 1.5 терабайта в разжатом. Если необходимо обработать эти данные целиком то это требует очень много дискового пространства просто потому что 7z не адаптирован под потоковую обработку файлов, если не писать специальных инструментов для работы с ним. В итоге обработка этих данных происходит через промежуточное их разжатие в виде файлов. Всё могло бы быть куда удобнее если бы данные сразу распространялись в форматах parquet или же в CSV сжатом для потоковой обработки, например, Zstandard или даже Gzip.
В принципе сейчас всё выглядит так что мир data science сейчас parquet-first, а в остальные области работа с новыми-старыми форматами файлов приходит на пересечении с data science.
#opendata #dataengineering #fileformats #csv #parquet
Вот приведу несколько примеров:
1. Статистические данные одного крупного международного агентства, сравнительно среднего объёма в CSV файлах в десятки гигабайт и сотнях миллионов строк. Какая-либо информация о файлах отсутствует, просто выложены дампами для массовой выгрузки (bulk download). Большая часть инструментов при автоматическом парсинге файлов выдаёт что у них кодировка us-ascii, но в итоге оказывается что она windows-1250 (Центрально и Восточно европейская). Причём символы выдающие эту кодировку начинаются где-то очень далеко при обработке файлов. Механизмы автоидентификации кодировки почти все используют куски файла, а не его целиком, в результате нужно понаступать на множество грабель прежде чем настроить автоматическое преобразование этих файлов в другие форматы. Могло бы быть проще будь файлы в кодировке UTF-8, или вообще не в CSV, а в Parquet, к примеру.
2. Файлы Parquet в 800MB и 3.5GB со статистикой международной торговли. Первый может быть развернут в примерно 14GB CSV файл, второй в примерно 56GB. Это сотни миллионов и даже миллиарды записей. Аналитические запросы к таким файлам, на среднем железе, выполняются очень долго и поэтому Parquet файлы необходимо разрезать на множество файлов поменьше по продукции или по странам, в зависимости от задач применения. Но и разрезка больших Parquet файлов весьма ресурсоёмкая задача если пользоваться SQL запросами на копирование. В этом случае большие CSV файлы проще и быстрее обрабатывать потоковым образом. Проблема именно в размере Parquet файлов и решается она дистрибуцией их в меньшем размере
3. В "
4. Один из крупных порталов международной статистики отдаёт данные статистики в CSV формате внутри файлов заархивированных 7z. Это десятки гигабайт в сжатом виде и 1.5 терабайта в разжатом. Если необходимо обработать эти данные целиком то это требует очень много дискового пространства просто потому что 7z не адаптирован под потоковую обработку файлов, если не писать специальных инструментов для работы с ним. В итоге обработка этих данных происходит через промежуточное их разжатие в виде файлов. Всё могло бы быть куда удобнее если бы данные сразу распространялись в форматах parquet или же в CSV сжатом для потоковой обработки, например, Zstandard или даже Gzip.
В принципе сейчас всё выглядит так что мир data science сейчас parquet-first, а в остальные области работа с новыми-старыми форматами файлов приходит на пересечении с data science.
#opendata #dataengineering #fileformats #csv #parquet
Model Context Protocol (MCP) был разработан компанией Anthropic для интеграции существующих сервисов и данных в LLM Claude. Это весьма простой и неплохо стандартизированный протокол с вариантами референсной реализации на Python, Java, Typescript, Swift, Kotlin, C# и с большим числом реализаций на других языках.
Тысячи серверов MCP уже доступны и вот основные ресурсы где можно их искать:
- Model Context Protocol servers - большой каталог на Github
- Awesome MCP Servers - ещё один большой каталог с переводом на несколько языков
- Pipedream MCP - интеграция с 12.5 тысяч API и инструментов через сервис Pipedream
- Zapier MCP - интеграция с 8 тысячами приложений через сервис Zapier
- Smithery - каталог MCP серверов, 6200+ записей по множеству категорий
- MCP.so - каталог в 13100+ MCP серверов
Похоже мода на MCP пришла надолго и пора добавлять его к своим продуктам повсеместно.
#ai #opensource #aitools
Тысячи серверов MCP уже доступны и вот основные ресурсы где можно их искать:
- Model Context Protocol servers - большой каталог на Github
- Awesome MCP Servers - ещё один большой каталог с переводом на несколько языков
- Pipedream MCP - интеграция с 12.5 тысяч API и инструментов через сервис Pipedream
- Zapier MCP - интеграция с 8 тысячами приложений через сервис Zapier
- Smithery - каталог MCP серверов, 6200+ записей по множеству категорий
- MCP.so - каталог в 13100+ MCP серверов
Похоже мода на MCP пришла надолго и пора добавлять его к своим продуктам повсеместно.
#ai #opensource #aitools
Model Context Protocol
Introduction - Model Context Protocol
Get started with the Model Context Protocol (MCP)
Полезные свежие научные статьи про работу с данными:
- Large Language Models for Data Discovery and Integration: Challenges and Opportunities - обзор подходов по обнаружению и интеграции данных с помощью LLM
- Unveiling Challenges for LLMs in Enterprise Data Engineering - оценка областей применения LLM в корпоративной дата инженерии
- Magneto: Combining Small and Large Language Models for Schema Matching - про одно из решений сопоставления схем через использование LLM и SLM
- Interactive Data Harmonization with LLM Agents - интерактивная гармонизация данных с помощью LLM агентов
- Towards Efficient Data Wrangling with LLMs using Code Generation - про автоматизацию обработки данных с помощью кодогенерирующих LLM
#readings #data
- Large Language Models for Data Discovery and Integration: Challenges and Opportunities - обзор подходов по обнаружению и интеграции данных с помощью LLM
- Unveiling Challenges for LLMs in Enterprise Data Engineering - оценка областей применения LLM в корпоративной дата инженерии
- Magneto: Combining Small and Large Language Models for Schema Matching - про одно из решений сопоставления схем через использование LLM и SLM
- Interactive Data Harmonization with LLM Agents - интерактивная гармонизация данных с помощью LLM агентов
- Towards Efficient Data Wrangling with LLMs using Code Generation - про автоматизацию обработки данных с помощью кодогенерирующих LLM
#readings #data
Я об этом редко упоминаю, но у меня есть хобби по написанию наивных научно фантастических рассказов и стихов, когда есть немного свободного времени и подходящие темы.
И вот в последнее время я думаю о том какие есть подходящие темы в контексте человечества и ИИ, так чтобы в контексте современного прогресса и не сильно повторяться с НФ произведениями прошлых лет.
Вот моя коллекция потенциальных тем для сюжетов.
1. Сила одного
Развитие ИИ и интеграции ИИ агентов в повседневную жизнь даёт новые возможности одиночкам осуществлять террор. Террористы не объединяются в ячейки, не общаются между собой, к ним невозможно внедрится или "расколоть" потому что они становятся технически подкованными одиночками с помощью дронов, ИИ агентов и тд. сеящие много хаоса.
2. Безэтичные ИИ.
Параллельно к этическим ИИ появляется чёрный рынок отключения этики у ИИ моделей и продажа моделей изначально с отключённой этикой. Все спецслужбы пользуются только такими ИИ, как и многие преступники. У таких ИИ агентов нет ограничений на советы, рекомендации, действия и тд.
3. Корпорация "Сделано людьми"
Почти всё творчество в мире или создаётся ИИ, или с помощью ИИ или в среде подверженной культурному влиянию ИИ. Появляется корпорация "Сделано людьми" сертифицирующая продукцию как гарантированно произведённой человеком. Такая сертификация это сложный и болезненный процесс, требующий от желающих её пройти большой самоотдачи.
#thoughts #future #thinking #ai
И вот в последнее время я думаю о том какие есть подходящие темы в контексте человечества и ИИ, так чтобы в контексте современного прогресса и не сильно повторяться с НФ произведениями прошлых лет.
Вот моя коллекция потенциальных тем для сюжетов.
1. Сила одного
Развитие ИИ и интеграции ИИ агентов в повседневную жизнь даёт новые возможности одиночкам осуществлять террор. Террористы не объединяются в ячейки, не общаются между собой, к ним невозможно внедрится или "расколоть" потому что они становятся технически подкованными одиночками с помощью дронов, ИИ агентов и тд. сеящие много хаоса.
2. Безэтичные ИИ.
Параллельно к этическим ИИ появляется чёрный рынок отключения этики у ИИ моделей и продажа моделей изначально с отключённой этикой. Все спецслужбы пользуются только такими ИИ, как и многие преступники. У таких ИИ агентов нет ограничений на советы, рекомендации, действия и тд.
3. Корпорация "Сделано людьми"
Почти всё творчество в мире или создаётся ИИ, или с помощью ИИ или в среде подверженной культурному влиянию ИИ. Появляется корпорация "Сделано людьми" сертифицирующая продукцию как гарантированно произведённой человеком. Такая сертификация это сложный и болезненный процесс, требующий от желающих её пройти большой самоотдачи.
#thoughts #future #thinking #ai
Запоздалая новость российской статистики, система ЕМИСС (fedstat.ru) будет выведена из эксплуатации до 31 декабря 2025 года. Формулировки совместного приказа Минцифры и Росстата упоминают что именно до, а то есть в любой день до конца этого года, хоть завтра.
Что важно:
1. Этого приказа нет на сайте Минцифры России [1]. Единственный приказ опубликованный приказ с этим номером 1138 есть за 2021 год и нет на сайте официального опубликования [2].
2. Этого приказа нет на сайте Росстата [3] (или не находится и сильно далеко спрятан) и точно нет на сервере официального опубликования [4]
Откуда такая таинственность и почему он есть только в Консультант Плюс?
А самое главное, что заменит ЕМИСС? И существует ли уже это что-то
Ссылки:
[1] https://digital.gov.ru/documents
[2] http://publication.pravo.gov.ru/search/foiv290?pageSize=30&index=1&SignatoryAuthorityId=1ac1ee36-2621-4c4f-917f-9bffc35d4671&EoNumber=1138&DocumentTypes=2dddb344-d3e2-4785-a899-7aa12bd47b6f&PublishDateSearchType=0&NumberSearchType=0&DocumentDateSearchType=0&JdRegSearchType=0&SortedBy=6&SortDestination=1
[3] https://rosstat.gov.ru/search?q=%D0%9F%D1%80%D0%B8%D0%BA%D0%B0%D0%B7+673&date_from=01.01.2024&content=on&date_to=31.12.2024&search_by=all&sort=relevance
[4] http://publication.pravo.gov.ru/search/foiv296?pageSize=30&index=1&SignatoryAuthorityId=24a476cb-b5ae-46c7-b46a-194c8ee1e29a&EoNumber=673&&PublishDateSearchType=0&NumberSearchType=0&DocumentDateSearchType=0&JdRegSearchType=0&SortedBy=6&SortDestination=1
#opendata #closeddata #russia #statistics
Что важно:
1. Этого приказа нет на сайте Минцифры России [1]. Единственный приказ опубликованный приказ с этим номером 1138 есть за 2021 год и нет на сайте официального опубликования [2].
2. Этого приказа нет на сайте Росстата [3] (или не находится и сильно далеко спрятан) и точно нет на сервере официального опубликования [4]
Откуда такая таинственность и почему он есть только в Консультант Плюс?
А самое главное, что заменит ЕМИСС? И существует ли уже это что-то
Ссылки:
[1] https://digital.gov.ru/documents
[2] http://publication.pravo.gov.ru/search/foiv290?pageSize=30&index=1&SignatoryAuthorityId=1ac1ee36-2621-4c4f-917f-9bffc35d4671&EoNumber=1138&DocumentTypes=2dddb344-d3e2-4785-a899-7aa12bd47b6f&PublishDateSearchType=0&NumberSearchType=0&DocumentDateSearchType=0&JdRegSearchType=0&SortedBy=6&SortDestination=1
[3] https://rosstat.gov.ru/search?q=%D0%9F%D1%80%D0%B8%D0%BA%D0%B0%D0%B7+673&date_from=01.01.2024&content=on&date_to=31.12.2024&search_by=all&sort=relevance
[4] http://publication.pravo.gov.ru/search/foiv296?pageSize=30&index=1&SignatoryAuthorityId=24a476cb-b5ae-46c7-b46a-194c8ee1e29a&EoNumber=673&&PublishDateSearchType=0&NumberSearchType=0&DocumentDateSearchType=0&JdRegSearchType=0&SortedBy=6&SortDestination=1
#opendata #closeddata #russia #statistics
Некоторые мысли вслух по поводу технологических трендов последнего времени:
1. Возвращение профессионализации в ИТ.
Как следствие массового применения LLM для разработки и кризиса "рынка джуниоров" в ИТ. LLM ещё не скоро научатся отладке кода и в этом смысле не смогут заменить senior и middle разработчиков, а вот про массовое исчезновение вакансий и увольнения младших разработчиков - это всё уже с нами. Плохо ли это или хорошо? Это плохо для тех кто пошёл в ИТ не имея реального интереса к профессиональной ИТ разработке, хорошо для тех для кого программная инженерия - это основная специальность и очень хорошо для отраслевых специалистов готовых осваивать nocode и lowcode инструменты.
Перспектива: прямо сейчас
2. Регистрация и аттестация ИИ агентов и LLM.
В случае с ИИ повторяется история с развитием Интернета, когда технологии менялись значительно быстрее чем регуляторы могли/способны реагировать. Сейчас есть ситуация с высокой степенью фрагментации и демократизации доступа к ИИ агентам, даже при наличии очень крупных провайдеров сервисов, у них множество альтернатив и есть возможность использовать их на собственном оборудовании. Но это не значит что пр-ва по всему миру не алчут ограничить и регулировать их применение. Сейчас их останавливает только непрерывный поток технологических изменений. Как только этот поток хоть чуть-чуть сбавит напор, неизбежен приход регуляторов и введение аттестации, реестров допустимых LLM/ИИ агентов и тд. Всё это будет происходить под знамёнами: защиты перс. данных, защиты прав потребителей, цензуры (защиты от недопустимого контента), защиты детей, защиты пациентов, национальной безопасности и тд.
Перспектива: 1-3 года
3. Резкая смена ландшафта поисковых систем
Наиболее вероятный кандидат Perplexity как новый игрок, но может и Bing вынырнуть из небытия, теоретически и OpenAI и Anthropic могут реализовать полноценную замену поиску Google. Ключевое тут в контроле экосистем и изменении интересов операторов этих экосистем. А экосистем, по сути, сейчас три: Apple, Google и Microsoft. Понятно что Google не будет заменять свой поисковик на Android'е на что-либо ещё, но Apple вполне может заменить поиск под давлением регулятора и не только и пока Perplexity похоже на наиболее вероятного кандидата. Но, опять же, и Microsoft может перезапустить Bing на фоне этих событий.
Перспектива: 1 год
4. Поглощение ИИ-агентами корпоративных BI систем
Применение больших облачных ИИ агентов внутри компаний ограничено много чем, коммерческой тайной, персональными данными и тд., но "внутри" компаний могут разворачиваться собственные LLM системы которые будут чем-то похожи на корпоративные BI / ETL продукты, они тоже будут состыкованы со множеством внутренних источников данных. Сейчас разработчики корпоративных BI будут пытаться поставлять продукты с подключением к LLM/встроенным LLM. В перспективе всё будет наоборот. Будут продукты в виде корпоративных LLM с функциями BI.
Перспектива: 1-2 года
5. Сжимание рынка написания текстов / документации
Рынок документирования ИТ продукта если ещё не схлопнулся, то резко сжимается уже сейчас, а люди занимавшиеся тех писательством теперь могут оказаться без работы или с другой работой. В любом случае - это то что не просто поддаётся автоматизации, а просто напрашивающееся на неё. Всё больше стартапов и сервисов которые создадут Вам качественную документацию по Вашему коду, по спецификации API, по бессвязанным мыслям и многому другому.
Перспектива: прямо сейчас
#ai #thinking #reading #thoughts
1. Возвращение профессионализации в ИТ.
Как следствие массового применения LLM для разработки и кризиса "рынка джуниоров" в ИТ. LLM ещё не скоро научатся отладке кода и в этом смысле не смогут заменить senior и middle разработчиков, а вот про массовое исчезновение вакансий и увольнения младших разработчиков - это всё уже с нами. Плохо ли это или хорошо? Это плохо для тех кто пошёл в ИТ не имея реального интереса к профессиональной ИТ разработке, хорошо для тех для кого программная инженерия - это основная специальность и очень хорошо для отраслевых специалистов готовых осваивать nocode и lowcode инструменты.
Перспектива: прямо сейчас
2. Регистрация и аттестация ИИ агентов и LLM.
В случае с ИИ повторяется история с развитием Интернета, когда технологии менялись значительно быстрее чем регуляторы могли/способны реагировать. Сейчас есть ситуация с высокой степенью фрагментации и демократизации доступа к ИИ агентам, даже при наличии очень крупных провайдеров сервисов, у них множество альтернатив и есть возможность использовать их на собственном оборудовании. Но это не значит что пр-ва по всему миру не алчут ограничить и регулировать их применение. Сейчас их останавливает только непрерывный поток технологических изменений. Как только этот поток хоть чуть-чуть сбавит напор, неизбежен приход регуляторов и введение аттестации, реестров допустимых LLM/ИИ агентов и тд. Всё это будет происходить под знамёнами: защиты перс. данных, защиты прав потребителей, цензуры (защиты от недопустимого контента), защиты детей, защиты пациентов, национальной безопасности и тд.
Перспектива: 1-3 года
3. Резкая смена ландшафта поисковых систем
Наиболее вероятный кандидат Perplexity как новый игрок, но может и Bing вынырнуть из небытия, теоретически и OpenAI и Anthropic могут реализовать полноценную замену поиску Google. Ключевое тут в контроле экосистем и изменении интересов операторов этих экосистем. А экосистем, по сути, сейчас три: Apple, Google и Microsoft. Понятно что Google не будет заменять свой поисковик на Android'е на что-либо ещё, но Apple вполне может заменить поиск под давлением регулятора и не только и пока Perplexity похоже на наиболее вероятного кандидата. Но, опять же, и Microsoft может перезапустить Bing на фоне этих событий.
Перспектива: 1 год
4. Поглощение ИИ-агентами корпоративных BI систем
Применение больших облачных ИИ агентов внутри компаний ограничено много чем, коммерческой тайной, персональными данными и тд., но "внутри" компаний могут разворачиваться собственные LLM системы которые будут чем-то похожи на корпоративные BI / ETL продукты, они тоже будут состыкованы со множеством внутренних источников данных. Сейчас разработчики корпоративных BI будут пытаться поставлять продукты с подключением к LLM/встроенным LLM. В перспективе всё будет наоборот. Будут продукты в виде корпоративных LLM с функциями BI.
Перспектива: 1-2 года
5. Сжимание рынка написания текстов / документации
Рынок документирования ИТ продукта если ещё не схлопнулся, то резко сжимается уже сейчас, а люди занимавшиеся тех писательством теперь могут оказаться без работы или с другой работой. В любом случае - это то что не просто поддаётся автоматизации, а просто напрашивающееся на неё. Всё больше стартапов и сервисов которые создадут Вам качественную документацию по Вашему коду, по спецификации API, по бессвязанным мыслям и многому другому.
Перспектива: прямо сейчас
#ai #thinking #reading #thoughts
Хороший разбор в виде дата истории темы зависимости даты рождения и даты смерти в блоге The Pudding [1]. Без какой-то единой визуализации, но со множеством графиков иллюстрирующих изыскания автора и выводы о том что да, вероятность смерти у человека выше в день рождения и близкие к нему дни и это превышение выше статистической погрешности.
Собственно это не первое и, наверняка, не последнее исследование на эту тему. В данном случае автор использовал данные полученные у властей Массачусеца с помощью запроса FOIA о 57 010 лицах.
Там же есть ссылки на исследования с большими выборками, но теми же результатами.
Так что берегите себя и внимательнее относитесь к своим дням рождения, дата эта важная, игнорировать её никак нельзя.
P.S. Интересно что данные в виде таблиц со значениями дата рождения и дата смерти - это точно не персональные данные. Ничто не мешает госорганам не только в США их раскрывать, но почему-то они, всё таки, редкость.
Ссылки:
[1] https://pudding.cool/2025/04/birthday-effect/
#opendata #dataviz #curiosity #statistics
Собственно это не первое и, наверняка, не последнее исследование на эту тему. В данном случае автор использовал данные полученные у властей Массачусеца с помощью запроса FOIA о 57 010 лицах.
Там же есть ссылки на исследования с большими выборками, но теми же результатами.
Так что берегите себя и внимательнее относитесь к своим дням рождения, дата эта важная, игнорировать её никак нельзя.
P.S. Интересно что данные в виде таблиц со значениями дата рождения и дата смерти - это точно не персональные данные. Ничто не мешает госорганам не только в США их раскрывать, но почему-то они, всё таки, редкость.
Ссылки:
[1] https://pudding.cool/2025/04/birthday-effect/
#opendata #dataviz #curiosity #statistics
Как читать отчёты Счетной палаты в РФ ? Не надо читать финальные выводы и довольно бесполезно читать вступление. Всё самое главное посередине там где изложение фактов. Какие-то факты могут отсутствовать, может не быть иногда глубины, но те что приведены, как правило, достаточно точны.
История с ГАС Правосудие и потерей огромного объёма данных судебных решений именно тот случай [1]. Спасибо ребятам из Если быть точным за подробное изложение и анализ этой истории [2]. Единственно с чем я несогласен, а это не надо сотням людей использовать один парсер. Нужна была бы открытая база судебных решений которая когда-то была в Росправосудии. Парсер - это плохой путь, приводящий к массовому применении каптчи. Но создать ресурс с данными тоже непросто, его могут быстро заблокировать.
Однако в этой истории про ГАС Правосудие я хочу сделать акцент на 60+ миллиардах потраченных на эту систему денег, и даже не на то что их взломали, и это всячески скрывали. А на том у что у системы не было резервных копий.
И скажу я вам не тая, подозреваю что это не единственная российская государственная информационная система резервных копий к которых нет. И не появится если за это не будет последствий, а их похоже что нет.
И, конечно, данные по судебным делам - это самое что ни на есть общественное достояние, общественно значимые данные которые безусловно и безальтернативно должны были бы быть открытыми. Вместо того чтобы отреагировать на парсеры данных выкладкой датасетов для массовой выгрузки, сотрудники Суддепа много лет развлекались встраиванием каптчи на страницах сайта. А то есть на "вредительство" у них время и ресурсы были, а на создание архивных копий нет?
Ссылки:
[1] https://t.me/expertgd/12660
[2] https://t.me/tochno_st/518
#opendata #closeddata #theyfailed #russia
История с ГАС Правосудие и потерей огромного объёма данных судебных решений именно тот случай [1]. Спасибо ребятам из Если быть точным за подробное изложение и анализ этой истории [2]. Единственно с чем я несогласен, а это не надо сотням людей использовать один парсер. Нужна была бы открытая база судебных решений которая когда-то была в Росправосудии. Парсер - это плохой путь, приводящий к массовому применении каптчи. Но создать ресурс с данными тоже непросто, его могут быстро заблокировать.
Однако в этой истории про ГАС Правосудие я хочу сделать акцент на 60+ миллиардах потраченных на эту систему денег, и даже не на то что их взломали, и это всячески скрывали. А на том у что у системы не было резервных копий.
И скажу я вам не тая, подозреваю что это не единственная российская государственная информационная система резервных копий к которых нет. И не появится если за это не будет последствий, а их похоже что нет.
И, конечно, данные по судебным делам - это самое что ни на есть общественное достояние, общественно значимые данные которые безусловно и безальтернативно должны были бы быть открытыми. Вместо того чтобы отреагировать на парсеры данных выкладкой датасетов для массовой выгрузки, сотрудники Суддепа много лет развлекались встраиванием каптчи на страницах сайта. А то есть на "вредительство" у них время и ресурсы были, а на создание архивных копий нет?
Ссылки:
[1] https://t.me/expertgd/12660
[2] https://t.me/tochno_st/518
#opendata #closeddata #theyfailed #russia
Telegram
Эксперт по Госдуме
Я давно не писал про наш поисковик по данным Dateno, а там накопилось множество обновлений, надеюсь что вот-вот уже скоро смогу об этом написать. А пока приведу ещё пример в копилку задач как ИИ заменяет человека. Я много рассказывал про реестр дата каталогов который Dateno Registry dateno.io/registry, полезный для всех кто ищет не только данные, но и их источник. Этот реестр - это основа Dateno, в нём более 10 тысяч дата каталогов размеченных по разным характеристикам и с большими пробелами в описаниях. Откуда пробелы? потому что автоматизировать поиск источников удалось, а вот описание требует (требовало) много ручной работы.
Когда мы запускали Dateno на текущем реестре я оценивал трудоёмкость по его улучшению и повышении качества в полгода работы для пары человек вручную. Совсем немало скажу я вам, учитывая что этих людей ещё и надо обучить и
ещё надо контролировать качество работы и ещё и нужны инструменты чтобы всё это редактировать без ошибок.
В общем, чтобы долго не ходить, ИИ почти полностью справляется с этой задачей. Достаточно предоставить url сайта с каталогом данных и из него хорошо извлекаются все необходимые метаданные.
Для стартапа на данных - это очень заметное изменение. И это маленькая и теперь недорогая задача. После всех проверок можно будет значительно обновить реестр.
Кстати, о том зачем он нужен. Реестр каталогов данных точно нужен Dateno для индексации датасетов, но он же нужен и всем тем кто строит национальные порталы данных потому что позволяет агрегировать в него данные из всех национальных источников.
#opendata #dateno #datasets #dataengineering #llm #ai #dataunderstanding
Когда мы запускали Dateno на текущем реестре я оценивал трудоёмкость по его улучшению и повышении качества в полгода работы для пары человек вручную. Совсем немало скажу я вам, учитывая что этих людей ещё и надо обучить и
ещё надо контролировать качество работы и ещё и нужны инструменты чтобы всё это редактировать без ошибок.
В общем, чтобы долго не ходить, ИИ почти полностью справляется с этой задачей. Достаточно предоставить url сайта с каталогом данных и из него хорошо извлекаются все необходимые метаданные.
Для стартапа на данных - это очень заметное изменение. И это маленькая и теперь недорогая задача. После всех проверок можно будет значительно обновить реестр.
Кстати, о том зачем он нужен. Реестр каталогов данных точно нужен Dateno для индексации датасетов, но он же нужен и всем тем кто строит национальные порталы данных потому что позволяет агрегировать в него данные из всех национальных источников.
#opendata #dateno #datasets #dataengineering #llm #ai #dataunderstanding
Dateno
Dateno - datasets search engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.
О том как устроена архивация сайтов в примере. Я не раз писал о том как устроена веб архивация и цифровое архивирование в принципе и среди многих проблем в этой области, далеко не последняя в том что почти весь инструментарий для этой задачи, скажем так, слегка устарелый. А на то чтобы переписать его нужны серьёзные расходы, но не инвестиционные потому что они врядли окупаются.
Один из таких инструментов - это grab-site [1] от команды ArchiveTeam, волонтеров архивирующих гибнущие веб сайты.
Его ключевые фичи - это возможность динамически настраивать списки блокировки/игнорирования и большие подборки преднастроенных правил игнорирования несодержательного контента.
Это, к слову, одна из серьёзных проблем при веб архивации, чтобы краулер не оказался в ловушке циклических перенаправлений и чтобы он не индексировал дубликаты. А также у grab-site в комплекте сервер мониторинга краулинга.
Внутри grab-site используется аналог утилиты wget под названием wpull. С очень давно не обновлявшимся кодом и чуть большими возможностями по автоматизации обработки получаемого потока данных.
Все эти инструменты из экосистемы WARC, они архивируют весь контент в WARC файлы.
Это экосистема выросшая из Интернет Архива, но переставшая развиваться уже много лет. Гораздо чаще контент с сайтов краулят не для архивации, а для обработки или извлечения данных и инструменты для архивации из WARC экосистемы для этого пригодны плохо.
Вместо них используют совсем другие краулеры, в том числе ныне популярные краулеры для AI или встроенные в инструменты вроде Elastic.
Тем не менее на фоне реформы российского Росстата архивировать его контент необходимо потому что, выражаясь аллегорически, "Почему-то каждый раз когда они снимают фильм про Робин Гуда, они сжигают нашу деревню" (c).
А я напомню про ещё один инструмент, metawarc [2] это разработанная мной несколько лет назад утилита по анализу веб архивов. Она извлекает из WARC файлов метаданные и делает рядом индексный файл с которым можно работать через SQL.
Ссылки:
[1] https://github.com/ArchiveTeam/grab-site
[2] https://github.com/datacoon/metawarc
#webarchives #digitalpreservation #opensource
Один из таких инструментов - это grab-site [1] от команды ArchiveTeam, волонтеров архивирующих гибнущие веб сайты.
Его ключевые фичи - это возможность динамически настраивать списки блокировки/игнорирования и большие подборки преднастроенных правил игнорирования несодержательного контента.
Это, к слову, одна из серьёзных проблем при веб архивации, чтобы краулер не оказался в ловушке циклических перенаправлений и чтобы он не индексировал дубликаты. А также у grab-site в комплекте сервер мониторинга краулинга.
Внутри grab-site используется аналог утилиты wget под названием wpull. С очень давно не обновлявшимся кодом и чуть большими возможностями по автоматизации обработки получаемого потока данных.
Все эти инструменты из экосистемы WARC, они архивируют весь контент в WARC файлы.
Это экосистема выросшая из Интернет Архива, но переставшая развиваться уже много лет. Гораздо чаще контент с сайтов краулят не для архивации, а для обработки или извлечения данных и инструменты для архивации из WARC экосистемы для этого пригодны плохо.
Вместо них используют совсем другие краулеры, в том числе ныне популярные краулеры для AI или встроенные в инструменты вроде Elastic.
Тем не менее на фоне реформы российского Росстата архивировать его контент необходимо потому что, выражаясь аллегорически, "Почему-то каждый раз когда они снимают фильм про Робин Гуда, они сжигают нашу деревню" (c).
А я напомню про ещё один инструмент, metawarc [2] это разработанная мной несколько лет назад утилита по анализу веб архивов. Она извлекает из WARC файлов метаданные и делает рядом индексный файл с которым можно работать через SQL.
Ссылки:
[1] https://github.com/ArchiveTeam/grab-site
[2] https://github.com/datacoon/metawarc
#webarchives #digitalpreservation #opensource
Про MCP ещё полезное чтение
A Critical Look at MCP [1] автор задаётся вопросом о том как же так получилось что протокол MCP (Model Context Protocol) используемый для интеграции сервисов, инструментов и данных с LLM спроектирован так посредственно и описан довольно плохо. О том же пишет другой автор в заметке MCP: Untrusted Servers and Confused Clients, Plus a Sneaky Exploit [2].
Думаю что дальше будет больше критики, но популярности MCP это пока никак не отменяет
Ссылки:
[1] https://raz.sh/blog/2025-05-02_a_critical_look_at_mcp
[2] https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/
#ai #llm #readings
A Critical Look at MCP [1] автор задаётся вопросом о том как же так получилось что протокол MCP (Model Context Protocol) используемый для интеграции сервисов, инструментов и данных с LLM спроектирован так посредственно и описан довольно плохо. О том же пишет другой автор в заметке MCP: Untrusted Servers and Confused Clients, Plus a Sneaky Exploit [2].
Думаю что дальше будет больше критики, но популярности MCP это пока никак не отменяет
Ссылки:
[1] https://raz.sh/blog/2025-05-02_a_critical_look_at_mcp
[2] https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/
#ai #llm #readings
raz.sh
Raz Blog
Для тех кто любит не только читать, но и слушать книжки. Audiblez [1] генератор аудиокниг по текстам, с открытым кодом, командной строкой и UI интерфейсом. Поддерживает английский, испанский, французский, хинди, итальянский, японский, португальский и китайский. Русский не поддерживает и даже армянского языка нет - это минус, в основном из-за того что внутри используется Kokoro-82M [2] модель где только эти языки. Можно выбрать книгу в epub формате и голос и создать аудиокнигу.
Сама генерация аудиокниги весьма ресурсоёмкая, но реалистичная.
Лицензия MIT.
Ссылки:
[1] https://github.com/santinic/audiblez
[2] https://huggingface.co/hexgrad/Kokoro-82M
#opensource #ai #books #readings
Сама генерация аудиокниги весьма ресурсоёмкая, но реалистичная.
Лицензия MIT.
Ссылки:
[1] https://github.com/santinic/audiblez
[2] https://huggingface.co/hexgrad/Kokoro-82M
#opensource #ai #books #readings
GitHub
GitHub - santinic/audiblez: Generate audiobooks from e-books
Generate audiobooks from e-books. Contribute to santinic/audiblez development by creating an account on GitHub.
Forwarded from Dateno
Global stats just got a major upgrade at Dateno!
We’ve updated time series from the World Bank (DataBank) and International Labour Organization (ILOSTAT) — now available in a more powerful and usable format.
📊 What’s new?
19,000+ indicators across economics, employment, trade, health & more
3.85 million time series with clean structure and rich metadata
Support for multiple export formats: CSV, Excel, JSON, Stata, Parquet, and more
Fully documented schemas and all source metadata included
We’re not just expanding our data coverage — we’re raising the bar for how usable and reliable open statistical data can be.
And there’s more coming:
📡 New sources of global indicators
🧠 Improved dataset descriptions
🧩 A specialized API for working with time series in extended formats
Have a specific use case for international statistics? We’d love to hear from you → dateno@dateno.io
🔍 Try it now: https://dateno.io
#openData #datadiscovery #statistics #dataengineering #dateno #worldbank #ILOSTAT
We’ve updated time series from the World Bank (DataBank) and International Labour Organization (ILOSTAT) — now available in a more powerful and usable format.
📊 What’s new?
19,000+ indicators across economics, employment, trade, health & more
3.85 million time series with clean structure and rich metadata
Support for multiple export formats: CSV, Excel, JSON, Stata, Parquet, and more
Fully documented schemas and all source metadata included
We’re not just expanding our data coverage — we’re raising the bar for how usable and reliable open statistical data can be.
And there’s more coming:
📡 New sources of global indicators
🧠 Improved dataset descriptions
🧩 A specialized API for working with time series in extended formats
Have a specific use case for international statistics? We’d love to hear from you → dateno@dateno.io
🔍 Try it now: https://dateno.io
#openData #datadiscovery #statistics #dataengineering #dateno #worldbank #ILOSTAT
Dateno
Dateno - datasets search engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.